Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние динамических свойств объекта

    Продольное перемешивание является одним из основных факторов, определяюш их статические и динамические свойства насадочных колонн, причем степень этого влияния зависит от гидродинамической обстановки в аппарате. При построении математических моделей насадочных колонн как объектов с распределенными параметрами с учетом продольного перемешивания возможны два подхода описание процесса на основе дифференциальных уравнений в частных производных второго порядка — диффузионная модель, либо приближенное представление непрерывного процесса многоступенчатым с сосредоточенными параметрами в каждой ступени — ячеечная модель. [c.244]


    Влияние динамических свойств объекта [c.92]

    Выбор из приведенного перечня регулируемых параметров для конкретной ВУ решается путем исследования установки как объекта оптимизации и автоматизации с учетом статических и динамических свойств объекта, характера влияния регулируемых параметров на экономические показатели режима работы ВУ, наличия надежных и достаточно точных средств измерения параметров. [c.27]

    Исследования показали, что здания и помещения операторских, конструкция рабочих мест, расположение пультов управления, компоновка на них приборов, индикаторов, кнопок, тумблеров, рычагов и других органов управления проектируются и выполняются в настоящее время не во всех случаях с необходимым учетом естественных требований человека, важных эргономических стандартов и нормативов. При этом не учитывается, что предметы объемно-пространственной производственной среды (машины, пульты, панели, органы индикации и управления, сиденье оператора) всецело определяют состав и структуру внешних раздражителей, содержание и тяжесть реакций на них человека, общие энергозатраты, эффективность, надежность и безопасность труда. Причем все эти факторы, в том числе вид деятельности, являются производными различных порядков от динамического внешнего окружения (рабочего пространства). Особенно глубоко изменяется качество работы оператора под влиянием статических, динамических и других свойств объекта управления. [c.87]

    Как уже кратко отмечалось, в ядерных реакторах не существует однозначно определимой связи мел<ду определенной номинальной мощностью, физическими параметрами и размерами, с одной стороны, и динамическими свойствами — с другой. Эти динамические свойства характеризуются, например, определенными постоянными времени этого объекта, так как даже реакторы большой номинальной мощности с большими тепловыми емкостями могут иметь незначительные постоянные времени, прежде всего при низкой мгновенной мощности. Ни один ядерный реактор, который уже проработал в течение какого-то времени, нельзя полностью остановить , поскольку даже при сильно докритическом режиме, т. е. в остановленном реакторе, протекает цепная реакция, в которой участвуют как нейтроны из источника 8 (), так и запаздывающие нейтроны (образовавшиеся во время предыдущей работы реактора). Мощность остановленного реактора часто в 10 —раз меньше начальной номинальной мощности. Однако безопасный пуск реактора требует максимально возможной мощности остановленного реактора, в связи с чем применяются источники нейтронов как можно большей мощности. В определенном смысле ядерный реактор тем безопаснее, чем меньше его мгновенная мощность. При высоких мгновенных мощностях обратная связь между мощностью и реактивностью в результате влияния температуры активной зоны реактора и целого ряда других физических факторов весьма эффективна, так как ее усиление почти пропорционально мощности реактора. Для большинства реакторов она отрицательна и всегда запаздывает. Благоприятное влияние этой обратной связи может возникнуть, если мощность превысит определенный предел, но [c.577]


    Количество энергии в реакторе и регулирующий орган определяют скорость высвобождения энергии с помощью изменения числа нейтронов, участвующих в процессе деления. При этом изменяется отношение числа нейтронов одного поколения к числу нейтронов следующего поколения. В связи с этим постоянной реактивности (постоянному положению регулирующего органа) может соответствовать повышение или снижение (в зависимости от знака реактивности) мощности по экспоненциальному закону. Скорость повышения или снижения мощности определяется абсолютной величиной реактивности. Мгновенная обратная связь с усилением р смещает связи, образованные запаздывающими нейтронами. При достаточно высокой положительной реактивности р увеличивается число нейтронов, поступающих на вход члена КОо(з) от обратной связи с усилением р, без запаздывания от мгновенной мощности реактора. Таким образом, запаздывание в обратных связях, образованных запаздывающими нейтронами, перестает оказывать влияние на изменение мощности, рост которой определяется только запаздыванием в прямой ветви передаточной функции К0о(5). Однако это запаздывание очень мало, и в отличие от обычных регулируемых объектов, динамические свойства которых можно охарактеризовать одной или несколькими постоянными времени, не зависящими от состояния этих объектов, постоянная времени реактора изменяется. Постоянная времени Го/ х, характеризующая запаздывание в прямой ветви члена КОо(з), для реакторов различного типа неодинакова — она изменяется от десятых долей секунды до нескольких микросекунд. [c.578]

    До настоящего времени количественная сторона взаимного влияния контуров регулирования цеха электролиза друг на друга не была предметом специального исследования. Недавно А. С. Лернер, изучая динамические свойства участка охлаждения — сушки хлора как объекта регулирования экспериментально получил кривые изменения вакуума (кривые разгона) для двух видов возмущающего воздействия 1) скачкообразного изменения вакуума на входе в хлорный компрессор (вентилем вручную) при неизменной подаче воды в холодильник смешения (температура хлора постоянна) и 2) изменения (на 11,5%) подачи воды в холодильник прп неизменном вакууме. [c.166]

    Рассмотрим более подробно влияние концентрации исходной газовой фазы, постоянной времени и коэффициента усиления тепловой модели объекта на устойчивость и динамические свойства системы регулирования. [c.223]

    Па этой основе были развиты представления об иерархии времен и о минимальных и адекватных моделях, достаточно полно отражаюш их основные свойства объекта. Был также развит параметрический анализ динамического поведения систем. Па современном этапе в моделях учитываются изменения пространственной структуры биологической системы путем введения членов, отражаюш их явления переноса в активных средах. Па первый план сейчас выступает параметрический анализ базовых моделей, отражаюш их те или иные стороны самоорганизации биологических систем во времени и пространстве. Эти исследования требуют уже применения развитых и достаточно сложных математических методов. Кроме того, все большее значение приобретает использование вероятностных моделей в биологии, которые отражают влияние стохастических факторов на детерминистские процессы в биологических системах. Бифуркационная зависимость динамического поведения системы от критических значений параметров отражает возникновение в системе динамической информации, которая реализуется при смене режима функционирования. [c.10]

    Данные о свойствах динамических каналов двух типов дефлегматоров не позволяют сделать однозначный вывод о предпочтительности одной из двух рассмотренных структур АСР верха ректификационной колонны. Анализ их показывает, что при внесении возмущения по /з с модулем 10 % установившееся отклонение температуры контрольной тарелки составило для аппарата В — (- -1,19°С), для аппарата С — (-(-1,197°С). В то же время инерционность канала fз — 1 для аппарата В несколько ниже, чем для аппарата С . С другой стороны, структурные схемы АСР верха колонны для данных аппаратов имеют качественные различия. АСР верха колонны со встроенным дефлегматором является связанной через объект, тогда как для выносного аппарата она реализуется двумя контурами с односторонним влиянием а на А к. т. В связи с этим выбор рациональной структуры АСР может быть сделан лишь после рассмотрения результатов их моделирования для одного и того же стационарного состояния. Моделирование АСР с выносным и встроенным дефлегматором проводилось для стационарного состояния, соответствующего точке 15 из табл. 4.12 (Оо = 0,034 = —11,6 с = 0,034 Р = 23,1-105 Ох = 0,716  [c.199]


    Исследование переходных режимов верха ректификационной колонны ставит перед собой задачу анализа динамической составляющей /д комбинированного критерия проектирования дефлегматора колонны /к в области изменения технологических параметров и параметров Ксв, Тк, анализа ограничения (1.2.15) и способа проектирования аппарата с учетом его тех- иико-экономической эффективности и требований, предъявляемых к качеству переходных процессов замкнутой АСР. Анализ влияния технологических параметров на величину /д проводится косвенно оценкой их воздействия на значения инерционностей. /а, и коэффициентов усиления динамических каналов. При этом Зачитывалось, что при наличии запаздывания в цепи регулирования увеличение инерционности по этому каналу приводит к уменьшению /д, т. е. динамических ошибок стабилизации аь Такой же эффект оказывает уменьшение коэффициента усиления по каналу /з—аь Исследование проведено воспроизведением динамических свойств отдельного конденсатора и технологического комплекса по уравнениям (2.7.12), (2.8.16). Коэффициенты математической модели динамики получены по алгоритму, включающему решение задачи проектного расчета конденсатора и расчет коэффициентов по данным приложения 1. Результаты моделирования объекта регулирования представлены в табл. П.8—П. 16 приложения и на рис. 4.23—4.29. [c.218]

    Система автоматической идентификации в целом построена с учетом имеющейся априорной информации о технологических объектах, является помехозащищенной от влияния неконтролируемых возмущений в объекте, позволяет осуществить идентификацию динамических характеристик технологических объектов беспоисковыми методами в режимах их нормальной эксплуатации, учитывая все основные специфические свойства, изложенные выше. [c.458]

    Так можно получить зависимость параметра регулирования от основных возмущений — изменения состава поступающей в реактор среды и расхода или состава реагентов. В целом статические характеристики САР могут зависеть и от ряда других причин расхода сточной воды, свойств регулирующих органов и системы подачи реагентов и полноты протекания реакции, которая в свою очередь является функцией температуры, расхода и соотношения концентраций вступающих во взаимодействие компонентов. Влияние всех этих факторов трудно рассчитать, располагая лишь исходными технологическими данными и результатами лабораторных исследований. В таких случаях статические характеристики следует получать непосредственно на действующем объекте регулирования. При этом, если допустимо временное нарушение нормального хода технологического процесса очистки, следует отдать предпочтение методу активного эксперимента, состоящему в том, что через определенные промежутки времени задают приращения одной из входных величин. Значения регулируемого параметра фиксируют каждый раз после достижения им новой установившейся величины. Все входные факторы изменяют на всем диапазоне их существования в рабочих условиях. Получение статических характеристик указанным методом, хотя и трудоемко при большом числе переменных факторов, однако обеспечивает достоверные результаты. Его можно совмещать с экспериментальным изучением динамических характеристик — кривых нормального разгона объекта регулирования, рассмотренных ниже. [c.50]

    В то же время существует составляющая погрешности модели, обусловленная практическими и теоретическими трудностями методического характера при постановке эксперимента. Основные из них влияние погрешности измерения параметров (особенно входных), нестационарность и инфранизкочастотность случайных процессов, частота дискретизации, число данных (длина интервала наблюдения), влияние динамических свойств объекта. Вследствие [c.91]

    Отклонения от стационарности имеют двоякий характер. Они могут быть преднамеренными например, в пусковой период или при сознательном переходе от одного режима к другому. Изменение показателей процесса во времени в подобных случаях представляет несомненный интерес для технолога. Отклонения могут быть и непреднамеренными к ним относятся случайные флуктуации параметров, влияющих на ход процесса. Эти отклонёния являются нежелательными, и их вредное воздействие на показатели процесса стремятся свести к минимуму с помощью систем регулирования. Проектирование таких систен" невозможно без ясного представления о динамических свойствах объекта регулирования, определяющих характер изменения показателей процесса во времени под влиянием тех или иных возмущающих воздействий. [c.235]

    Исследуя свойства радиопрофилактических веществ, Ф. Ю. Ра-чинский и др. (1963) пришли к выводу, что наиболее общим в действии различных протекторов является их антиокислительная активность, но не все антиоксиданты способны защищать биологические объекты от действия ионизирующей радиации. Примером несоответствия реального радиозащитного эффекта на биологических объектах и физико-химических параметров препаратов in vitro могут служить величины окислительно-восстановительного потенциала аскорбиновой кислоты и каротина, проявляющих сильное антиокислительное и радиозащитное действие в растворах и значительно или полностью утрачивающих эти свойства в опытах на различных биологических объектах. Снижение стационарного окислительно-восстановительного потенциала в тканях, наблюдаемое при введении в организм радиопротекторов, свидетельствует о том, что система в целом под влиянием радиопротектора проявляет более выраженные антиокислительные свойства. Это связано с многочисленными и весьма разнообразными биохимическими процессами, приводящими к возрастанию содержания в измеряемой системе восстановленных недоокисленных эндогенных веществ— доноров электронов — и (или) к снижению уровня окислительных эндогенных веществ. Состав эндогенных веществ, определяющих уровень окислительно-восстановительного потенциала, может быть весьма разнообразным. Поэтому естественно предположить, что даже в том случае, когда радиопротекторы не вызывают изменения суммарного уровня потенциала в тканях животных, они все же могут привести при сохранившемся динамическом равновесии между окислительными и восстановительными формами к накоплению эндогенных веществ, ответственных за повышение устойчивости организма к действию ионизирующей радиации, например эндогенных протекторов. [c.268]

    Выше были рассмотрены вопросы динамики электрогидравлических следящих приводов с дроссельным регулированием на основе линейных математических моделей, получаемых без учета существенных нелинейностей. Такой подход к исследованию и расчету приводов позволяет определить влияние постоянных времени и коэффициентов усиления элементов на устойчивость и качество переходных процессов, выбрать коэффициент усиления обратной связи в зависимости от требуемой точности управления каким-либо объектом и, наконец, провести сравнение динамических свойств приводов с различными корректирующими элементами н дополнительными обратными связями. Перечисленные задачи решаются методами анализа и методами синтеза по логарифмическим амплитудным частотным характеристикам разомкнутого контура привода. Результаты расчетов линейных моделей при малых отклонениях переменных величин лучше подтверждаются экспериментами при совершенной конструкции и технологии изготовления приводов и при меньших отличиях действительных характеристик нагрузок от приняпых в исследуемой модели. [c.405]

    В показанном на рис. 8.27 случае тепло отводится из колонны только осфым орошением на верху колонны, и поэтому должна увеличиться подача этого орошения. В свою очередь, увеличение подачи орощения позволяет понизить температуру паров на верху колонны и снизить соответственно температуру конца кипения ректификата (или конценфацию в нем тяжелых углеводородов). Таким образом, воздействие на подвод тепла в колонну способствует изменению всего массообменного процесса по колонне в целом и четкости ректификации в частности. Эта сложная взаимозависимость учитывается при автоматизации работы колонны, в схемах которой взаимное влияние парамефов и импульсов регулирования корректируется, а также учитываются динамические (инерционные) свойства объекта регулирования. [c.420]

    Некоторое снижение требований к быстродействию хроматографов достигается применением их в каскадных системах регулирования в качестве корректора регулятора. Однако и в этом случае динамические характеристики хроматографа оказывают существенное влияние на свойства системы. Влияние на качество регулирования продолжительности цикла работы хроматографа как датчика каскадной системы регулирования ректификационной колонны с известными динамическими характеристиками было исследовано с помощью аналоговой вычислительной машины [7]. Система регулирования была построена по следующей схеме. Хроматограф контролировал состав смеси в конденсаторе паров верхнего продукта. Информация о содержании ключевого компонента в дистилляте поступала в качестве корректирующего сигнала на регулятор расхода нижнего продукта. Было показано, что при изменении нагрузки колонны состав дистиллята стабилизировался при использовании хроматографа с четырехминутной периодичностью анализа за время, вдвое большее, чем нри использовании хроматографа с одноминутной периодичностью. При увеличении продолжительности цикла анализа свыше четырех минут качество регулирования существенно ухудшалось. Для предварительной оценки пригодности хроматографа для работы в системе автоматического регулирования можно воспользоваться рекомендацией, предложенной в работе [8] запаздывание информации в системе регулирования по времени не должно превышать 20% от продолжительности переходного процесса в объекте. [c.158]

    Цитированные результаты, на наш взгляд, убедительно демонстрируют, что такие характеристики поверхности, как гидрофильность и гидрофобность, совершенно недостаточны для описания модифицированных поверхностей применительно к их взаимодействию с биологическими объектами. Понятхю, что адсорбционные свойства зависят также и от динамических свойств привитых молекул, степени кристалличности монослоев, наличия разупорядоченных доменов, их распределения и т. п. Влияние данных параметров поверхности на адсорбцию биополимеров и клеток практически не исследовано, и можно предположить, что это направление будет бурно развиваться в ближайшее время. [c.503]

    ХТС — определение параметров фнзнко-химических свойств технологических потоков и характеристик равновесия /3 — разработка приближенных или простых математических моделей элементов 14 — выбор параметров элементов 15 — разработка априорной математической модели ХТС 16 — выделение элементов, изменение параметров которых оказы вает наибольшее влияние на чувствительность ХТС — определение материально-тепловых нагрузок на элементы (расчет матернально-тепловых балансов) 18 — компоновка производства и размещение оборудования 19 — разработка более точных стационарных и динамических моделей элементов 20 — уточнение значений параметров элементов 2/— информационная модель ХТС 22 — математическая модель для исследования надежности и случайных процессов функционирования ХТС 25 — математическая модель динамических режимов функционирования ХТС 24 — математическая модель стационарных режимов функционирования ХТС 25 —значение характеристик помехозащищенности 25 — значение характеристик надежности 27 — значение характеристик наблюдаемости 28 — значение-характеристик управляемости 29 — исследование гидравлических режимов технологических потоков ХТ(3 30 —значение характеристик устойчивости 37 —значение характеристик ин-терэктности 32—значение характеристик чувствительности 33 —значение критерия эффективности ХТС 34 — оптимизация ХТС 35 — алгоритмы для АСУ ХТС 36 —параметры технологического режима 37 — параметры насосов, компрессоров и другого вспомогательного-оборудования Зв —параметры элементов ХТС 39 — технологическая топология ХТС 40 — выдача заданий на конструкционное проектирование объекта химической промышлен ностп. [c.55]

    Влияние условий сушки в средах с различным содержанием кислорода на свойства ПВХ и некоторые эксплуатационные характеристики материала на его основе изучено в [128]. Объектом исследования служил суспензионный ПВХ с молекулярной массой Мц = 1,245-105 и 1,15-10 . Образцы ПВХ с влажностью 25% сушили в термостатируемом шкафу в атмосфере воздуха, технического азота [5% (об.) кислорода] и в вакууме при остаточном давлении 10 кПа [содержание кислорода = 2% (об.)]. Для высушенных образцов ПВХ определяли насыпную плотность Рн и угол естественного откоса а, анализировали молекулярные характеристики, термическую стабильность и визуально оценивали цвет продукта. Из молекулярных характеристик оценивали число ненасыщенных Х(С=С), концевых и внутренних связей, а также блоков п полисопряженных (ППС) и двойных С=С-связей. Определяли также температуру начала разложения Тр , статическую ю термоста-бильносгь и динамическую термостабильность Тд (на пластографе Брабендера) порошка ПВХ при 175 °С. Термостойкость образцов прозрачного винипласта, изготовленных вальцево-прессовым методом при массовом соотношении ПВХ, стеарата кадмия, органического фосфита и эпоксидированного масла, равном 100 0,8 1,5 3,0, оценивали в статических условиях по термостабильности и цветостойкости Ц при 175 °С - по изменению цвета до почернения при выдержке в термокамере. Образцы сушили в интервале температур 60 - 140 °С не менее 2,5 ч. В интервале температур 60 - 100 °С все высушенные образцы были белого цвета, а пластины винипласта - прозрачными и имели одинаковый слегка желтоватый оттенок. Насыпная плотность высокомолекулярного ПВХ (Мг = 1,245-10 ) оставалась постоянной (рн = 0,38 г/см ), а низкомолекулярного (Mji = 1,15-10 ) - увеличилась от 0,4 до 0,47 г/см при всех условиях сушки, т.е. низкомолекулярный ПВХ более подвержен термоусадке при Т> Т . [c.92]

    Целью настоящей работы являлось изучение влияния плотности поперечного сшивания на динамические механические свойства уретановых эластомеров. В качестве объектов исследования были использованы полиуретаны, полученные на основе би- и полифункциональных полиэфиров адипиновой кислоты и этилен- и диэтиленгли-колей (ПЭА и ПДЭА). В качестве структурирующих агентов применяли триметилолпропан (ТМП) и глицерин (Г). Для получения полифункциональных полиэфиров их вводили в количестве ОД моль на 1 моль адипиновой кислоты. [c.105]

    Геомагнитное поле оказывает влияние буквально тт все процессы, совершающиеся в отдельных клетках, организмах, и в конечном итоге на всю биосферу Земли. Проведенные исследования показывают, что гомеостазис, т. е. способность поддерживать динамическое постоянство состава и свойства фенотипа и генотипа, мо кет зависеть от геомагнитного поля и находиться под его контролем. Полученные данные открывают возмоншость для глубокого и полного объяснения некоторых проблем гелиобиологии. Па основе признания роли геолтагнитного поля в л изнедоятель-ности организмов становится понятной глобальность и синхронность гелиобиологических реакций, ибо геомагнитное поле все-проникающе и имеет различные вариации. По вместе с тем остается недостаточно ясным ряд вопросов какие именно геофизические факторы оказывают существенное влияние па жизнедеятельность живых организмов имеется ли специфическое влияние их на различные виды экологических объектов (человек, животное, растения, бактерии) количественные и качественные особенности изолированного и комбинированного воздействия на биосистемы молекулярные механизмы их биологического действия проявления действия этих факторов на здоровых и больных людей и т. д. [Дубров, 1973, 1974]. [c.92]


Смотреть страницы где упоминается термин Влияние динамических свойств объекта: [c.212]    [c.424]    [c.53]    [c.414]    [c.65]    [c.65]   
Смотреть главы в:

Моделирование промышленных процессов полимеризации -> Влияние динамических свойств объекта




ПОИСК







© 2024 chem21.info Реклама на сайте