Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контроль качества жидкого водорода

    КОНТРОЛЬ КАЧЕСТВА ЖИДКОГО ВОДОРОДА [c.194]

    Текучесть - одно из самых характерных свойств жидкого состояния. Под текучестью сплошной среды понимают ее способность совершать непрерывное, неограниченное движение в пространстве и во времени под действием приложенных сил. Именно по вязкости (величине, обратной текучести) жидкости отличаются между собой более всего. Если, например, плотности жидкостей от наиболее легкой - жидкого водорода до наиболее тяжелой - расплавленной платины отличаются в 70 раз, то вязкости различных жидкостей могут отличаться в миллионы раз. Коэффициенты вязкости и их температурные производные весьма чувствительны к ассоциативному состоянию вещества и межмолекуляр-ным взаимодействиям в растворах. Так, в системе фениловое горчичное масло - диэтиламин вязкость изменяется в 3,5 10 раз, в то время как ряд других свойств и, е. А., р и др. изменяются сравнительно мало (например, плотность всего лишь на несколько десятых г/см ). Еще большее различие в коэффициентах вязкости имеют неводные растворы различных полимеров. Молекулярные взаимодействия обеспечивают широкий диапазон изменения вязкости при изменении параметров состояния (Т, Р, С и др.) и обусловливают противоположную по сравнению с газами ее температурную зависимость. Все это заставляет рассматривать вязкость как эффективный параметр физико-химического анализа жидких систем и чувствительное средство контроля качества жидкофазных материалов. В настоящей главе рассматриваются основные средства измерения вязкости, методы расчета характеристик вязкого течения. Основное внимание уделено ньютоновским жидкостям и среди других капиллярным методам ее измерения. [c.46]


    На основе данного способа определения создан портативный экспресс-анализатор для контроля качества питьевой воды и опытный образец портативного анализатора жидких проб (ОСЕ-2 ООО "Гидролит"). С помощью прибора возможно определение общего микробного индекса и перекиси водорода в грунтовом электролите после отделения клеток от глинисттых частиц, а также в электролите под отслоившемся покрытием трубопровода. [c.24]

    При соответствующих условиях спектр излучения гелия в газоразрядной трубке постоянного тока состоит из серии линий, ограниченной с коротковолновой стороны ионизационным пределоь (24, 47 эв). Наиболее интенсивная из них имеет длину волны 584 А (21,21 эв), и на долю этой резонансной линии приходится не менее 99% мощности излучения во всем спектре. В области более длинных волн имеется серия - 5, коротковолновый край которой находится при 3000 А ( 4 5в), с последующими несколькими линиями в видимой области, из которых наиболее характерная линия с >. = 5875 А (желтая). Таким образом, ясно, что у подавляющего большинства веществ, у которых потенциал ионизации (ПИ) больше или равен 5 эв, ионизацию можно вызвать только с помощью резонансной линии Не 584 А. Следы водорода, от которых очень трудно избавиться, обусловливают излучение а-линии серии Лаймана с длиной волны 1215 А (10,20 эв), а кислород и азот, десорбирующиеся с поверхности лампы после обезгаживания системы, дают линейчатый спектр излучения в области ниже 1000 А. Все эти виды излучения могут также вызывать ионизацию большинства исследуемых веществ, что осложняет анализ электронных энергетических спектров. Поэтому очень важно, чтобы газ в разрядной трубке был исключительно чистым к счастью, это можно обеспечить, пропуская гелий через нагретую окись меди и ловушки, наполненные активированным углем и охлаждаемые жидким азотом. Контроль за качеством излучения разрядной трубки легко осуществить по линиям Н (серии Бальмера), О и N в видимой области. При нормальной работе свет источника имеет желтовато-персиковую окраску и не сопровождается голубым свечением вблизи электродов. Наличие полос ионизации в электронном энергетическом спектре, вызванной излучением примесей в лампе, нетрудно распознать по увеличению их интенсивности при изменении спектрального состава излучения за счет дополнительного введения в газ этих примесей. Например, слабая, но четко различимая узкая линия в фотоэлектронном спектре СЗа (см. ниже), которую ранее [И ] относили к шестому потенциалу ионизации, в действительности, как показали последующие исследования, объясняется фотоионизацией электрона на высшем занятом уровне (ПИ = 10,11 эв ) за счет [c.86]



Смотреть страницы где упоминается термин Контроль качества жидкого водорода: [c.121]   
Смотреть главы в:

Жидкий водород -> Контроль качества жидкого водорода




ПОИСК





Смотрите так же термины и статьи:

Водород жидкий

Контроль качества



© 2025 chem21.info Реклама на сайте