Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Н, N, О, С1, Вг и I с помощью методов резонансной спектроскопии

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]


    В жидкостях и газах влияние диполь-дипольного взаимодействия определяют по статистическому тепловому движению молекул. При исследовании различия резонансных сигналов, обусловленного воздействием Яд и Язз неодинаково связанных протонов или группы протонов, необходима максимальная разрешающая способность порядка 10 —10 . (Следует отметить, что для разрешения дублета О-линий натрия достаточна разрешающая способность порядка 10 ) Необходимость исследования твердых тел, жидкостей и газов привела к разработке разнообразных экспериментальных методов ЯМР-спектроскопии. Твердые тела исследуют при помощи широкополосных спектрометров ЯМР, жидкости и газы — спектрометрами с высокой разрешающей способностью. [c.254]

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]


    Использование лазеров значительно расширило границы применения К. р. с. и привело к развитию ряда новых методов в спектроскопии КР. Возможность изменения длины волны возбуждения путем замены лазеров или с помощью лазера с перестраиваемой частотой привела к развитию резонансного КР, к-рое возникает, когда частота возбуждающего света попадает в область поглощения в-ва. Этот метод позволяет определять низкие концентрации в-в, что особенно важно для биологии и биохимии. [c.437]

    Определенную информацию о структуре можно получить и другими методами 1) по данным о дипольном моменте, 2) о магнитной восприимчивости, 3) по интенсивности электронных спектров, 4) с помощью мессбауэровской (гамма-резонансной) спектроскопии и 5) по круговому дихроизму и путем изучения дисперсии оптического вращения. Эти физические методы имеют существенные ограничения в отношении числа и вида молекул, которые можно исследовать с их помощью, и некоторые другие недостатки. Эти методы не дают сведений о длинах связей и углах между ними. Более того, в некоторых случаях из-за сложности интерпретации данных могут быть сделаны неправильные выводы, поэтому эти методы редко используют в структурных исследованиях. [c.294]

    АТОМНАЯ ЭНЕРГИЯ, то же, что ядерная энергия. АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ (атомно-абсорбц. спектрометрия), метод количеств, элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора (см. ниже), пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетич состояния. Этим переходам в атомных спектрах соответствуют т. наз. резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера (см. Абсорбционная спектроскопия), мерой концентрации элемента служит оптич. плотность A = g(l jl), где /ц и /-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой. [c.216]

    Метод фотоэлектронной спектроскопии в паровой фазе дает возможность преодолеть указанные выше трудности в исследовании электронного строения молекул. Этот метод был разработан независимо и практически одновременно в Ленинграде и Лондоне (1—3]. Опыты, проведенные в Империал колледж (Лондон), показали, что наиболее удобным и воспроизводимым источником монохроматического ионизирующего излучения может служить гелиевая резонансная лампа (Лу = 21,21 эв). Аналогичные опыты советских исследователей, основанные на том же принципе торможения фотоэлектронов коаксиальными цилиндрическими сетками, проводились с другим источником ионизирующего излучения в качестве него использовалось излучение водородной разрядной трубки с линейчатым спектром, из которого с помощью вакуумного монохроматора с окошками из ЫР выделялась одна узкая линия. Получаемый таким образом световой поток имеет значительно меньшую интенсивность, а энергия фотонов ненамного превышает 11,7 эв. [c.84]

    Метод спектроскопии ЯМР используют для испытания подлинности лекарственных веществ, которая может быть подтверждена либо по полному набору спектральных параметров, характеризующих структуру данного соединения, либо по наиболее характерным сигналам спектра. Подлинность можно также установить с помощью стандартного образца, добавляя определенное его количество к анализируемому раствору. Полное совпадение спектров анализируемого вещества и его смеси со стандартным образцом указывает на их идентичность. Количественное определение лекарственного вещества может быть также выполнено с использованием спектров ЯМР. Относительная погрешность количественных определений методом ЯМР зависит от точности измерений площади резонансных сигналов н составляет 2—5 %. При определении относительного содержания вещества или его примеси измеряют площади сигналов резонанса испытуемого вещества и стандартного образца. Затем вычисляют количество испытуемого вещества. Для определения абсолютного содержания лекарственного вещества или примеси анализируемые образцы готовят количественно и добавляют к навеске точно отвешенную массу внутреннего стандарта. После этого выполняют регистрацию спектра, измеряют площади сигналов анализируемого вещества (примеси) и внутреннего стандарта, затем вычисляют абсолютное содержание. [c.197]

    Получены [1695, 1696] данные о конформациях полиметилметакрилата в бензольном растворе для измерения сдвигов использовался трис(дитриметилацетометанато)европий. С помощью метода ЯМР изучали [1697] адсорбцию и десорбцию регулярного полиметилметакрилата из хлороформного раствора на силикагеле. Спектроскопию ЯМР высокого разрешения использовали [1698] для получения данных о конформациях полиметилметакрилата. Тот же метод [1699, 1700] и ЯМР широких линий [1701] нашел применение при изучении структуры стереокомплекса изотактического и синдиотактического полиметилметакрилата. Получены [1702] спектры ЯМР полиметилметакрилата на частоте 300 и 220 МГц. Резонансные сигналы метиленовых протонов в спектре на частоте 300 МГц имели четкую форму и были хорошо разрешены. В этом же спектре можно было идентифицировать сигналы четырех-, пяти- и шестичленных звеньев. [c.341]


    Причиной теоретического характера, препятствующей получению одинаковых данных о пространственном и энергетическом распределении электронов, является очень широкий интервал разностей энергии, регистрируемых разными методами. Из таблицы можно видеть, что при переходе от х-резонансной спектроскопии к рентгеновской спектроскопии величина доступной исследованию разности энергии изменяется на 11 порядков. Как уже отмечалось, для того чтобы на основании спектроскопических наблюдений получить сведения о распределении электронов, необходимо провести обработку первичных опытных данных с помощью теоретических [c.394]

    В 1958 г. Р. Мёссбауэр открыл явление резонансного ядерного поглощения и испускания у-квантов в твердых телах без отдачи. На его основе был создан метод у-резонансной спектроскопии, позволяющий измерять с большой точностью весьма слабые явления в физике, химии и биологии. Достаточно напомнить, что с помощью мёссбауэровских спектров получают сведения об участии 5-, р- и с/-электронов в химических связях соединений, а это позволяет определять валентность элементов, не разрушая вещества. В определенных случаях успех применения этого тончайшего метода зависит от степени чистоты и структурного совершенства кристалла. Например, на ядре тантала-181 удалось наблюдать резонанс исключительной добротности, когда применили танталовую фольгу чистотой 99,997% и вакуум порядка 10 ° мм рт. ст. Малейшая примесь кислорода размывает резонанс, уширяет резонансную линию. Ожидается, что по мере совершенствования кристаллов эта линия будет сужаться вплоть до естественной величины. Это существенно раздвинет границы применения метода вплоть до возможности проверки теории относительности в земных условиях. [c.38]

    Браун (17] измерил ПМР-спектры группы алкилзамещенных фенолят-анионов в смесях диметилсульфоксид—метиловый спирт и обнаружил значительные сдвиги резонансного сигнала метильных протонов в сторону сильного поля при увеличении содержания диметилсульфоксида в растворе. Этот эффект был объяснен перемещением избыточного электронного заряда на ароматическое кольцо при разрушении водородного мостика с атомом кислорода п-алкилфенолят-иона в среде апротонного растворителя. Мы применили ПМР-метод для характеристики состояния л-крезолят-аниона в растворе жидкого аммиака. Сравнение полученного значения т=7,95 с данными работы [17] показывает, что сигнал протонов СНз-группы в жидком аммиаке смещен в сторону высоких полей по сравнению с сигналом в растворе метилового спирта (т=7,81) и совпадает с таковым в растворе диметилсульфоксида (т = 7,95). Таким образом, последовательность изменения сольватирующей способности растворителей, получаемая с помощью ПМР-спектров, совпадает с найденным методом электронной спектроскопии. [c.122]

    Новые возможности для определения чистоты растворителей появились с развитием С-резонансной спектроскопии. С помощью этого метода стало возможным различать наличие углеродных атомов в различном химическом окружении, что можно использовать для качественных определений. Следует упомянуть однако, что чувствительность С-ЯМР-спектроскопии ниже чувствительности Н-ЯМР-спектроскопии. Из-за низкого естественного содержания С-изотопа измерения приходится проводить в более концентрированных растворах. В то же время разрешающая способность 1 зс-резонансной спектроскопии выше, чем у протонной резонансной спектроскопии. Следовательно, первая может быть использована для определения примесей (в случае присутствия их в достаточно высокой концентрации), химически несколько отличающихся от самого растворителя. Например, если загрязнение бензола толуолом вряд ли можно обнаружить методом протонного резонанса, то при оптимальных условиях это можно сделать с помощью С-ЯМР-спектроскопии. [c.246]

    Подобная реакция протекает в тетрагидрофуране и также со многими разнообразными ароматическими молекулами. Радикальная природа продуктов надежно подтверждена измерением магнитной восприимчивости [201] и при помощи метода парамагнитной резонансной спектроскопии [202]. В жидком аммиаке нафталин легко присоединяет два атома натрия и при гидролизе дает дигидропроизводное. Так же ведут себя многие ароматические соединения, причем реакция представляет собой весьма полезный метод восстановления, который значительно усовершенствован Берчем [187] и получил широкое применение при осуществлении различных синтезов. Процессы восстановления сопряженных диенов и ацетиленов при помощи различных комбинаций металлов, а также нитросоединений и других молекул не представляют достаточных доказательств протекания промежуточ- [c.462]

    Перспективным является применение изотопных технологий в медицине [8]. Масштаб их использования иллюстрируется следующими статистическими данными в СГЦА проводится более 36 тыс. медицинских процедур в день и около 100 млн лабораторных тестов в год с применением изотопов. Наиболее широко распространены процедуры, связанные с компьютерной томографией и введением терапевтических агентов. В ядерной медицине основной метод получения изображений с помощью стабильных изотопов — магнитно-резонансная спектроскопия на ядрах Н. Однако есть ещё несколько стабильных изотопов, имеющих спин и чётность 1/2 + ( Не, С, и др.), которые можно использовать для клинических исследований с помощью ядерной магнитно-резонансной спектроскопии. В последние годы интенсивно ведутся исследования возможностей применения Не и Хе для [c.12]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Эффективное понижение времени поперечной релаксации происходит в том случае, если рассматриваемые ядра периодически изменяют свои ларморовы частоты. Это явление представляет большой интерес для химии, так как для различных внутри-и межмолекулярных динамических процессов, таких, как протонный обмен, конформационные переходы (валентная таутомерия), могут происходить быстрые и обратимые изменения резонансных частот отдельных протонов. В том случае, если этот механизм целиком определяет поперечную релаксацию, то из температурно-зависимых величин Гг, которые связаны с ширинами линий (уравнение VII. 9), можно определить значения скоростей реакций. Таким образом, с помощью спектроскопии ЯМР могут исследоваться кинетические процессы, и этот метод играет важную роль в исследовании быстрых обратимых реакций. [c.241]

    История ЯМР начиналась с применения в нем традиционных методов спектроскопии [1.1—1.6], позволяющих изучать молекулярную систему с помощью спектра. Спектр непосредственно отражает резонансные свойства системы и позволяет проникнуть в ее квантовомеханическую природу. [c.21]

    Здесь уместно упомянуть еще об одном очень интересном спектральном методе, который пока еще не получил широкого распространения в каталитических исследованиях. Речь идет о резонансном комбинационном рассеянии света, который часто позволяет получить большое число хорошо разрешенных компонент колебательной структуры. Использование этих данных для расчета поверхностей потенциальной энергии связей в каталитических комплексах и адсорбированных молекулах требует, однако, дальнейшей разработки теории колебаний в многоатомных системах и создания соответствующих автоматизированных программ для расчетов на ЭВМ. Решение этой задачи будет способствовать и более строгой интерпретации спектров фосфоресценции, а также позволит исследовать с помощью ИК-спектроскопии многие нехарактеристические колебания, которые нельзя трактовать в простом двухатомном приближении. Таким образом, перспективы дальнейшего использования спектральных методов для изучения элементарных стадий катализа достаточно широки. [c.35]

    Геометрия карбоксильной группы может быть определена экспериментально с помощью рентгеноструктурного анализа, а для жидких или газообразных образцов — методом дифракции электронов или микроволновой спектроскопией. Рентгеноструктурные исследования кристаллических димеров (29) дают средние значения длин связей схема (Ш) . Карбоксильные ионы в силу резонансной стабилизации имеют две идентичные связи С—О длиной около 0,126 нм. [c.42]

    В вольтамперометрии с линейной разверткой напряжение изме няется между двумя предельными значениями с постоянной скоростью. Это изменение может быть однократным или циклическим в виде тре угольных волн, причем проводятся измерения соответствующего то ка (см. метод 7, табл. 2). Этот метод часто используется для получе ния количественных или полуколичественных представлений об электродной системе. По вольтамперометрическим кривым можно приблизительно проверить обратимость электродной системы, выяснить, имеет ли место многостадийность, распознать фарадеевский и нефа-радеевский адсорбционно-десорбщонный процессы и с помощью циклической вольтамперометрии определить электроактивные промежуточные соединения [201, 290 общий обзор вольтамперометрии с линейной разверткой содержится в 123, 248, 289, 490, 576]. Вольтамперометрия с линейной разверткой является особенно мощным средством для исследования сложных электродных процессов с участием органических соединений, если она применяется совместно с другими методами, такими, как оптическая абсорбционная спектроскопия [225, 231, 232] и электронно-спиновая резонансная спектроскопия [114, 309, 450]. Используя для контроля спектроскопию при зеркальном отражении, с помощью вольтамперометрии с линейной разверткой также легко изучать адсорбцию различных анионов и образование монослоев окислов или атомов чужеродных металлов [556]. [c.208]

    Спектроскопию ЯМР использовали [1332] при изучении явлений релаксации в поли-а-метилстироле. Спектр ЯМР поли-а-метилстирола был обсужден в работе [1333]. С помощью методов ЯМР, масс-спектрометрии, ИК-спектроскопии и кинетических исследований определена [1334] структура тетрамера а-метилстирола. Резонансные сигналы различных протонов в спектре ЯМР поли ( -изопропил-а-метилстирола) были отнесены [1335] к изотактическим, гетеротактическпм и синдиотакти-ческим тройным звеньям. На основании исследований методом ЯМР С получена информация о регулярности структуры по-ли-а-метилстирола и полибутадиенов [1337]. [c.297]

    Мощные лазерные источники света произвели настоящую револювд1Ю в аналитической оптической спектроскопии. Первым и прямым следствием их использования стало повышение чувствительности. В особых случаях, применяя резонансно стимулированную двухфотонную ионизахщю с помощью перестраиваемого лазера, удается достичь предельно возможной чувствительности — добиться обнаружения единственного атома (атом цезия) или всего одной молекулы вещества (нафталина). К этому же невероятному пределу приближается чувствительность метода индуцированной лазерной флуоресценции. С помощью лазерного зондирования можно обнаруживать загрязнения в атмосферном воздухе на расстоянии больше одной мили. Особенно хорошие результаты дает флуоресцентное возбуждение или лазерная раман-спектрометрия. В этом методе в сторону исследуемого объекта, например в сторону столба дыма, направляют импульс лазерного света и измеряют время, через которое появляется сигнал флуоресценции или сигнал комбинационного рассеяния (рамановский сигнал). Зная скорость света, можно определить, на каком удалении находится объект. Таким образом, сигнал не только расскажет нам, какие вещества (загрязняющие воздух соединения) находятся в объекте, но также позволит проследить, как они распространяются от источника загрязнений. [c.196]

    Поскольку краткое содержание книги достаточно хорошо отражено в предисловии авторов, нам хотелось бы отметить лишь следующее. Как ни широк диапазон обсуждаемых тем, вне рассмотрения остались явления, которые исследуются резонансными методами-ЯМР, ЭПР и ЯКР в теории и практике этих методов весьма часто применяется концепция симметрии [14, 15]. Превосходной иллюстрацией этого может служить название одного из разделов ( Исследование молекулярной симметрии методом спектроскопии ЯМР ) книги Ногради [16] (кстати, в ней приводится довольно подробный список дополнительной литературы по симметрии, составленный переводчиком). В качестве конкретного примера можно указать, что конфигурации молекул полиэдрических карборанов, о которых речь идет в гл. 3, были правильно установлены с помощью спектров ЯМР [17]. [c.6]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    Как следует уже из названия этого метода, образец, находящийся в постоянном магнитном поле, подвергается не длительному непрерывному облучению, а действию кратковременного мощного импульса, повторяющегося через определенные промежутки времени. Пpoдoлжиteльнo ть импульса составляет всего лишь около 50 пс, поэтому в соответствии с принципом неопределенности Гейзенберга фактически импульсы генерируются в широком диапазоне частот, что индуцирует одновременный резонанс всех ядер. Действительно, при продолжительности импульса А t, равной 50 пс, ДУ = = 1/50 10 = 20000 Гц (поскольку h Av, ht А) следов тельно, даже при 500 МГц, очевидно, охватывается диапазон 10000 nj (20 млн. д. х 500 Гц). Итак, во время кратковременного импульса энергия поглощается, так как все спиновые переходы возбуждаются одновременно. По завершении импульса индуцированная им намагниченность ядер быстро исчезает вследствие релаксации и восстанавливается обычное термическое распределение Больцмана. Этот процесс, называемый спадом свободной индукции (ССИ), описывается большим числом затухающих синусоидальных кривых, каждая из которых соответствует резонансной частоте данного ядра или данного набора эквивалентных ядер. Это головоломное сплетение кривых можно распутать с помощью ЭВМ на базе математической операции, называемой фурье-преобразованием, в результате которой сложный затухающий сигнал преобразуется р знакомый график зависимости поглощения от химического сдвига, регистрируемый в обычной спектроскопии ЯМР. [c.126]

    Из приведенного выше краткого обсуждения ясно, что при изучении природных пигментов поглощение света имеет фундаментальное значение. Спектроскопия электронного поглощения, с помощью которой регистрируют поглощение УФ-и видимого света, является основным спектроскопическим методом, применяющимся как для выявления свойств пигментов, так и для их количественного анализа. Однако специфические свойства пигментов в отношении поглощения света позволяют исследовать их и другими методами, главным образом резонансной рамановской спектроскопией и методом кругового ди-хипизма. Так же как и при изучении других органических мо- [c.24]

    При работе с пигментами обычно применяется резонансная рамановская спектроскопия. Когда длина волны падающего, или возбуждающего, света приближается к той, при которой происходит максимальное поглощение света образцом, улавливание кванта света становится гораздо более вероятным. Поэтому рассеяние света значительно увеличивается, а интенсивность рамановских линий сильно возрастает. В образце, содержащем смесь соединений, резонансное усиление регистрируется только для тех рамановских линий, которые обусловлены колебаниями молекул, возбужденных падающим УФ- или видимым светом. При этом получают информацию об определенных молекулах, поглощающих свет другие молекулы, которые не поглощают свет возбуждающей длины волны, не дают резонансно-усиленных рамановских линий. Резонансный раманов-ский метод, таким образом, особенно ценен для исследования пигментов in situ. Пигменты, находящиеся в панцире, коже и т. п., могут быть обнаружены и количественно изучены с помощью этого метода без предварительной экстракции из ткани и очистки от примесей. [c.27]

    Кроме эмиссионной спектроскопии, в последние годы начала распространяться атомно-абсорбционная. Этот метод основан на резонансном поглощении парами пробы, диссоциированными на атомы, света, излучаемого специальной лампой. Такие лампы, испускающие тонколинейчатый спектр каждого из платиновых металлов, изготовляются за границей и осваиваются в Советском Союзе [398, 399]. Излучение лампы проходит через пары анализируемой пробы. При этом, чем больше в пробе атомов исходного элемента, тем более интенсивно поглощение света от источника и, следовательно, тем больше ослабляются характерные спектральные линии. Интенсивность спектральных линий измеряется при помощи фотоэлемента. Этот метод обеспечивает ббльшую точность определения, чем предыдущий (1—2%). Он может быть применен для анализа тех же продуктов, а также для анализа растворов [407, 408]. [c.205]


Смотреть страницы где упоминается термин Н, N, О, С1, Вг и I с помощью методов резонансной спектроскопии: [c.315]    [c.238]    [c.521]    [c.139]    [c.70]    [c.70]    [c.298]    [c.869]    [c.394]    [c.413]    [c.177]    [c.9]    [c.13]    [c.286]    [c.293]    [c.71]    [c.67]    [c.204]   
Смотреть главы в:

Физическая химия быстрых реакций -> Н, N, О, С1, Вг и I с помощью методов резонансной спектроскопии




ПОИСК





Смотрите так же термины и статьи:

Метод резонансный

Резонансные

Спектроскопия резонансная



© 2025 chem21.info Реклама на сайте