Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен в потоке неньютоновских жидкостей

    Приближенные методы решения уравнения конвективного теплообмена с различными профилями скорости неньютоновских жидкостей в трубе, соответствующими более сложным реологическим законам, приводятся в монографии [22]. Там же рассматриваются некоторые задачи с учетом диссипативного тепловыделения в потоке неньютоновской жидкости и теплообмен с учетом зависимости коэффициента Оствальда п от температуры. [c.80]


    Построены решения ряда задач нестационарного теплообмена. Анализ решения для температурного поля в потоке жидкости и локального числа Нуссельта во втором и третьем приближениях показал, что они хорошо совпадают с точными решениями. Получены простые по форме и достаточно точные решения с учетом теплоты трения и внутреннего тепловыделения. Материал этой главы дополнен исследованиями задач при обобщенных граничных условиях третьего рода. Решение подобных задач позволит по определенной упрощенной математической модели исследовать сложный сопряженный теплообмен в системе жидкость в трубе — стенка — внешняя среда. Аналитический метод решения внутренних задач конвективного теплообмена позволяет исследовать поле температуры в турбулентном потоке жидкости. Изложен способ решения задач при течении жидкостей в трубах с различными профилями живого поперечного сечения. В этой же главе рассмотрены задачи теплообмена для неньютоновских жидкостей со степенным реологическим законом. [c.7]

    Другие исследования аналогий процессов переноса. В добавление к трем видам выражения аналогии, описанным выше, суш,е-ствуют многочисленные иные подходы к установлению связи между массо- или теплообменом и трением в турбулентном потоке [91, 61, 128, 131, 158, 107, 170, 136, 135, 100, 53, 81, 139, 183, 118, 63, 101, 16]. В работе [101] концепция аналогии процессов распространена на неньютоновские жидкости, подчиняющиеся степенному закону. [c.190]

    Диффузия к плоской пластине, обтекаемой степенной жидкостью. Конвективный массо- и теплообмен пластины, продольно обтекаемой неньютоновской жидкостью, рассматривался в работах [185]. В приближении диффузионного пограничного слоя (при больших числах Пекле Ре) результаты решения соответствуюш,ей задачи приводят к следуюш,ему выражению для безразмерного диффузионного потока  [c.284]

    Завершая краткий обзор методов определения коэффициентов теплоотдачи межу текучими теплоносителями и теплообменными поверхностями, следует отметить два обстоятельств а, Во-первых, существуют еще много видов конвективной теплоотдачи, расчетные соотношения для которых имеют структуру, аналогичную приведенным выше (теплообмен в змеевиках, теплоотдача от оребренных поверхностей, от наружных поверхностей пучков труб при сложном обтекании, от поверхностей пластинчатых теплообменных аппаратов, теплообмен поверхностей с потоками неньютоновских жидкостей, теплообмен при непосредственном соприкосновении несмешивающихся теплоносителей и т. п.) и приводятся в литературе по теплообмену. Во-вторых, определение коэффициентов теплоотдачи для соответствующих конкретных условий хоть и представляет собой одну из наиболее сложных и разнообразных задач анализа процессов теплообмена, но не является единственным этапом расчета. После вычисления значений а для конкретных видов взаимодействия теплоносителя с теплообенной поверхностью, как правило, проводится дальнейший расчет, имеющий целью определение величины необходимой поверхности теплообмена для передачи заданного количества теплоты (проектный вариант расчета). При известной величине теплообменной поверхности определяются конечные температуры теплоносителей (поверочный вариант расчета). Расходы обменивающихся теплотой теплоносителей и их теплофизические свойства обычно бывают предварительно известны. [c.264]


    Изложены теоретические основы расчета колонных аппаратов. Рассмотрены стационарные и нестационарные режимы обтекания жидких, твердых и газообразных частиц потоком ньютоновской и неньютоновской жидкости, массо- и теплообмен в зтих системах с учетом химических реакций и поверхностных явлений на границе раздела фаз. Результаты теретических исследований сопоставлены с зкспериментальными данными и использованы для расчета конкретных промышленных аппаратов. [c.2]

    При изучении влияния центробежных сил на течение аномальновязкой жидкости исследуются гидродинамические характеристики и теплообмен неньютоновских жидкостей — растворов и расплавов полимеров. На основании этих исследований определяются оптимальные условия стационарного и пульсационного течения реологических сред в каналах, являющихся рабочими частями машин и аппаратов химической и добывающей промышленности. Для оптимизации условий течения рассматриваются вопросы управления гидродинамическими параметрами потока. Исследования влияния на поток жидкости поля действия центробежных сил позволили разработать новую алмазную пилу, заполненную жидкостью. В этом инструменте снижены температурные напряжения в алмазоносном слое, благодаря чему повышается его стойкость. Помимо этого наличие в инструменте двухфазной среды металл — жидкость снизило уровень звукового давления, что улучшает санитарные условия труда рабочих при обработке различных материалов. В настоящее время проводятся конструкторско-технологические работы по созданию алмазной пилы с улучшенными характеристиками за счет эффективного использования жидкости для снятия температурного напряжения и уменьшения звукового давления в процессе ее эксплуатации. [c.111]

    С пек-рым допущением течение полимерного материала по каналам литниковой втулки и по литьевой форме может рассматриваться как стационарное изотермическое, описываемое ур-ниями установившегося ламинарного осесимметричного движения между двумя параллельными пластинами (для литьевой формы) или по цилиндрич. каналу (для литника). Протекающие при этом деформационные процессы характерны для несжимаемых (неньютоновских) жидкостей и подчиняются степенному закону изменения вязкостных свойств. Теплообмен при течении материала по литьевой форме рассматривают как одномерный тепловой поток от нагретого материала с темп-рой к охлаждаемой стенке формы с постоянной темп-рой Гф (для термопластов) или от нагретой стенки к менее нагретому материалу (для реактоплаетов и резиновых смесей). [c.35]


Смотреть страницы где упоминается термин Теплообмен в потоке неньютоновских жидкостей: [c.327]   
Смотреть главы в:

Методы расчёта задач тепломассопереноса Издание 2 -> Теплообмен в потоке неньютоновских жидкостей




ПОИСК





Смотрите так же термины и статьи:

Жидкости неньютоновские

Поток неньютоновской жидкости



© 2025 chem21.info Реклама на сайте