Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственная структура глобулярных белков

    В настоящее время показано [97], что устойчивость компактной пространственной структуры глобулярных белков в водных растворах обусловлена теми же силами, которые приводят к мицеллообразованию в растворах ПАВ. В результате гидрофобных взаимодействий в глобулах белков и мицеллах ПАВ возникают неполярные области, ответственные за солюбилизацию. Размер, состав и свойства этих областей целиком определяются конформацией белка, а так как конформация глобулярных белков в растворе практически не зависит от концентрации белка, становится понятным, что независимо от концентрации белка в растворе с глобулой белка должно взаимодействовать определенное количество углеводорода, а концентрация углеводородов в растворе увеличивается пропорционально числу солюбилизирующих глобул. [c.22]


    Пространственная структура глобулярного белка должна в конечном итоге обеспечить формирование некоторого активного центра или нескольких таких центров, в каждом из которых участвует относительно небольшое число аминокислотных остатков. [c.90]

    Белки состоят из аминокислотных остатков ( пептидных единиц ), содержащих различные боковые группы. Еще 10 лет тому назад можно было надеяться, что изучение конформаций аминокислот и низкомолекулярных пептидов сделает возможным предсказание пространственной структуры глобулярных белков. Но эта задача оказалась не столь простой. Несмотря на очень интенсивные исследования, предпринятые за последнее десятилетие в этом направлении, проблемы структуры белка до сих пор не ре- [c.359]

    В другом исследовании О.Б. Птицын [141] развивает тезис об отсутствии зависимости пространственного строения белковых молекул от их химического строения и тем самым ставит под сомнение эволюционный Путь развития белка (и не только его). Так, автор пишет "Широко распространено убеждение, что уникальная первичная структура данного белка совершенно необходима для сворачивания в определенную пространственную структуру и для его функции и является результатом направленного отбора в ходе биологической революции". В статье представлены аргументы в пользу альтернативной точки зрения, согласно Которой типичные пространственные структуры глобулярных белков характерны уже для случайных последовательностей аминокислотных остатков. Поэтому возможно, что первичные структуры белков - в основном просто примеры случайных аминокислотных последовательностей, лишь слегка отредактированных в ходе биологической эволюции для придания им дополнительного функционального смысла [141. С. 574]. Эта мысль развивается О.Б. Птицыным и М.В. Волькенштейном в более поздней совместной работе [145]. [c.505]

    Количество и разнообразие специфических центров связывания между молекулами межклеточного матрикса вполне допускает представление о том, что степень упорядоченности трехмерной структуры матрикса, и особенно базальных мембран, сопоставима со степенью упорядоченности пространственной структуры глобулярных белков. В определенной мере некоторый участок межклеточного матрикса можно рассматривать как единый олигомерный белок, кооперативно реагирующий на изменение любого из его мономеров. Конечно, в кооперативный ответ включается не весь матрикс в целом, а лишь некоторая область вокруг точки воздействия. [c.445]

    Шерага, Немети и сотр. [8—18] показали, что устойчивость компактной пространственной структуры глобулярных белков в водных растворах обусловлена теми же силами, которые приводят к мицеллообразованию в растворах ПАВ. В результате гидрофобных взаимодействий в глобулах белков и мицеллах ПАВ возникают неполярные области, ответственные за солюбилизацию. Повышение растворимости малорастворимых в воде веществ в растворах глобулярных белков (впервые наблюдавшееся Талмудом [19—21], Талмудом и Вреслером [22] и Дебориным с сотр. [23, 24]) было названо по аналогии с мылами солюбилизацией. [c.7]


    В настояш ее время некоторыми авторами высказывается идея о том, что распределение полярных и неполярных аминокислот вдоль полипептидной цепи является одним из важных элементов кодирования пространственной структуры глобулярных белков. Еще Фишером [55] было показано, что соотношение суммарных объемов полярных и неполярных аминокислотных остатков может обусловливать форму белковой молекулы (сферическую или вытянутую), а также способность образовывать четвертичные структуры. Анализ, проведенный Перутцем, Кендрью и Уотсоном [66] на примере восемнадцати аминокислотных последовательностей в различных миоглобинах и гемоглобинах, показал, что из 150 остатков, входящих в эти молекулы, 33 находятся в местах, экранированных от контакта с водой, т. е. во внутреннем ядре белковой глобулы, причем 30 из 33 являются неполярными аминокислотами (глицин, аланин, валин, лейцин, изолейцин, фенилаланин, иро-лин, цистеин, метионин, тирозоин и триптофан). Это наводит [c.16]

    Еще полгода или год назад казалось, что в науке о конформациях пептидов было достигнуто определенное насыщение. Конформации небольших фрагментов или регулярных полипептидов можно было предсказывать с неплохой точностью и сравнивать с имеющимися опытными данными, а поскольку модельных соединений было синтезировано много, то поток работ, посвященных конформационным расчетам, постепенно увеличивался, хотя явно ощущалось отсутствие новых идей. Создавалось впечатление, что пространственные структуры глобулярных белков и конформации модельных полипептидов разделены непреодолимым барьером, и, следовательно, последние оставались вещью в себе . Параллельно развивались статистические исследования белков, с тем чтобы иметь возможность получить представление о спиральных и неспиральных участках в белках на основании знания аминокислотной последовательности. Однако недавно Котель-чук и Шерага [21] установили важные свойства взаимодействия аминокислот друг с другом и пептидной цепью. Эти свойства открывают новые возможности для анализа про-стракственной сгруктуры белков или, по крайней мере, нерегулярных пептидов с относительно большим числом остатков, и потомку мы на них подробно остановимся. [c.94]

    Как связаны те закономерности, которые мы рассматривали с пространственной структурой глобулярных белков Конформационные карты дипептидов содержат разрешенные п запрещенные области и дают информацию о положении минимумов потенциальной энергии по ф и il). Структуры двух белков — миоглобина кашалота [165, 166] и лизоцима яичного белка [167 168], известны теперь уже достаточно хорошо для того, чтобы с точностью 20—30° можно было бы оценигь двугранные углы в каждой пептидной единице [16, 169]. Как мы уже отмечали, Брант и Шиммель [91], Рамачандран и Саси-секхаран [19], а также Шерага [20] рассматривали распределение точек, соответствующих углам ф и ij) в этих белках, на конформационных картах дипептидов. Очевидно, спиральные участки белков не представляют интереса (равно как и области р-структуры в лизоциме), их углы ф и гр находятся вблизи минимумов конформационной карты и потому мы приводим на рис. 26 только точки, относящиеся к неспиральным участкам. Конформационные карты аланинового дипептида построены при этом без учета электростатики и водородных связей (потенциалы Дашевского). [c.150]

    Рентгеноструктурный анализ применяется для изучения а) конформации полипептидной цепи (см. гл. XIV), б) пространственной структуры глобулярных белков (см. гл. XV) ив) структуры полинуклеотидов (см. гл. XVIII и XIX). [c.238]

    П т и ц ы и О. Б. Природа сил, определяющих нативные пространственные структуры глобулярных белков. Усп. совр. биол. . 1967, 63, стр. 3. [c.345]


Смотреть страницы где упоминается термин Пространственная структура глобулярных белков: [c.14]    [c.286]    [c.316]   
Смотреть главы в:

Конфирмации органических молекул -> Пространственная структура глобулярных белков




ПОИСК





Смотрите так же термины и статьи:

Структуры глобулярные

Структуры пространственные



© 2025 chem21.info Реклама на сайте