Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возможность теоретического предсказания скорости реакций

    Перейдем к рассмотрению экспериментов. Нам уже известны свойства плазмы с точностью до порядка величины. При определении термодинамических свойств возможная точность расчета не выходит за пределы 2%. При расчетах коэффициентов переноса точность много хуже. Кроме того, чтобы избавиться от практически непреодолимых математических трудностей, мы ввели при расчетах довольно грубые допущения, обычно принимаемые и в других работах. Мы усредняли многие непостоянные величины, причем это делалось так, что оценить ошибки в конечных результатах невозможно. Возможна ошибка в 2 раза, хотя многие считают используемую нами теорию не такой уж плохой. В какой степени положение может быть исправлено экспериментом Если бы мы имели материал, способный работать при 20 000 К, то все эксперименты были бы чрезвычайно просты. Измерив градиент давления при изотермическом ламинарном течении плазмы в трубе, можно определить вязкость. Эксперименты по теплообмену позволили бы определить теплопроводность и электропроводность, измеряя другие параметры. Из-за отсутствия необходимых для этого высокотемпературных материалов мы воспользуемся другим методом, который, возможно, позволит нам использовать наш теоретический аппарат для предсказания результатов эксперимента. В этом методе в сущности нет ничего нового. Еще до постановки экспериментов по определению вязкости обычных жидкостей (например воды) была принята гипотеза о прямой пропорциональности величины касательных напряжений градиенту скорости. Затем на основании этой гипотезы была получена теоретическая формула, описывающая ламинарное течение в трубе. Совпадение полученных теоретических результатов с экспериментом позволило считать вязкость физической константой, имеющей вполне определенный смысл. Этим же путем следовало бы идти и в случае плазмы, но отсутствие подходящих конструкционных материалов не позволяет осуществить изотермические условия. Тем не менее мы попытаемся воспользоваться этим же методом, ставя простые эксперименты, результаты которых можно предсказать теоретически, а затем попытаемся скорректировать теорию. Оказывается, что лучше всего использовать обычную струю плазмы, получаемую в определенных условиях. В струе плазмы, вытекающей из сопла плазматрона, температура очень сильно изменяется и по длине и по сечению струи. Если же взять трубу и разместить электроды на ее торцах, то осевого градиента температуры быть не должно. Следовательно, задача из двумерной превращается в одномерную. Для получения стационарной дуги необходимо охлаждать стенки трубы водой, поддерживая их температуру постоянной. Для плазмы при атмосферном давлении трудно придумать эксперимент проще. Теперь надо решить, какое вещество использовать в качестве рабочего тела. Конечно, для наших целей не годятся воздух, вода и даже водород, так как в водородной плазме содержится слишком много компонент На, Н, Н+ и е . Если не удастся достигнуть локального равновесия, то необходимо рассматривать по крайней мере четыре независимые группы уравнений с соответствующим числом соотношений для скорости реакций. Лучше с этой точки зрения применить гелий при 6 83 [c.83]


    Когда-то катализ рассматривался как особое, немного таинственное явление, со специфическими законами, раскрытие которых должно было сразу и в общей форме решить задачу подбора. Сейчас мы знаем, что это не так. Катализ по своей сущности — химическое явление. Изменение скорости реакции прн каталитическом воздействии обусловлено промежуточным химическим взаимодействием реагирующих веществ с катализатором. Это означает, что проблема предвидения каталитического действия принципиально не отличается от предсказания скорости химических реакций, но является только более сложной из-за участия дополнительного компонента — катализатора. Отсюда сразу становится ясной трудность задачи подбора катализаторов. Скорость даже простой химической реакции теория пока не может предсказать. Тем более недостижимо это в случае катализа. Теоретически предсказать катализатор — это значит рассчитать максимум вероятности образования активного комплекса для стадий рассматриваемой реакции при участии в ием одного из возможных катализаторов. Это пока недоступно даже при использовании самых совершенных электронных вычислительных машин. [c.45]

    Различия в скорости реакций для ряда аналогичных субстратов обусловлены различием их кислотно-основных свойств иногда кинетические измерения являются единственным путем для определения этих, свойств, например в случаях очень слабых кислот и оснований, когда невыполнимы измерения равновесия. Последнее бывает возможно для очень слабых оснований, если в качестве растворителя применяется сильная кислота однако для изучения очень слабых кислот не имеется растворителей, являющихся достаточно сильными основаниями, и измерения скорости реакции (например, скорости дейтерообмена, катализируемого основаниями, или галогенирования) представляют собой единственный способ сравнения кислотности. Такие данные могут служить для проверки теоретических предсказаний о влиянии химического строения на кислотность. [c.56]

    Любая макроскопическая система органических веществ при температурах около абсолютного нуля состоит из огромного числа молекул, постоянно испытывающих очень сложные ядерные движения. Но все же степень протекания реакции при равновесии может быть точно предсказана но изменению свободной энергии образования, экспериментальное определение которой не требует знания природы вещества [1]. Аналогично эмпирическая оценка параметров одной реакции может быть употреблена для сравнения и предсказания скорости других реакций даже (>ез знания подробностей форм ядерных двин<ений или типов столкновений, необходимых для возникновения и протекания реакции. Однако при определении термодинамических величин важны все молекулярные движения. При учете этих движений возможен теоретический расчет свойств простых молекул. Полного понимания влияния строения на реакционную способность нельзя ожидать до тех нор, пока в эмпирических параметрах скоростей не известны статистические составляющие молекулярных движений и столкновений. Сложность органических молекул чрезвычайно затрудняет решение такой задачи, и достижения в этой области иока незначительны. Дальнейшее количественное развитие возможно на основе некоторых соображений качественного характера о влиянии молекулярных движений на реакционную способность, что и рассматривается в данной главе. [c.564]


    Давно уже возникла потребность заменить чувство экспериментатора расчетом, для того чтобы сократить длительность экспериментальной работы. Пытались даже, как это уже излагалось выше (т. 1, стр. 519), выражать соотношения скоростей реакций в химических формулах, однако безуспешно. Подобные попытки, хотя и безуспешные вследствие недостаточности выразительных средств, показывают, однако, что можно опытным путем найти для определенных групп реакций довольно далеко идущие закономерности, связывающие скорости реакций и строение. Предпосылкой теоретического рассмотрения при этом является замена качественных наблюдений количественными измерениями. Измерения дают в качестве меры скорости реакций, протекающих в газовой фазе или в разбавленных растворах, порядок реакции и константу скорости реакции /с (т. I, гл. 10). В случае бимолекулярных реакций к является мерой успешных, т. е. приводящих к реакции сближений или, выражаясь короче, соударений молекул. Хотя частота этих успешных соударений в конечном итоге определяется видом тех нарушений, которые возникают в молекулах при столкновении, все же возможно, не рассматривая пока детально сложных процессов при столкновениях, сделать некоторые общие предсказания относительно необходимых для наступления реакции энергий, с которыми связана частота успешных соударений. [c.458]

    При гораздо более высоких давлениях, когда ЕТ-механизм дает второй порядок, принципиально возможно параллельное протекание тримолекулярной рекомбинации, но только по НМС-механиз-му, т. е. с другой константой скорости. Иными словами, речь идет о возможности существования второй переходной (в смысле изменения порядка) области давления. К сожалению, пока нет данных о кинетике рекомбинации радикалов в условиях, при которых можно было бы ожидать наличия этого эффекта. Относительно роли третьей частицы в реакциях более сложных радикалов имеется крайне мало сведений. Теоретически, однако, для каждого такого случая возможно предсказание области давлений, где должен измениться кинетический порядок рекомбинации [2181. [c.130]

    Данные по механизму, кинетике и катализу химических реакций имеют большое теоретическое и практическое значение. Первое заключается в раскрытии объективных законов, управляющих взаимодействием веществ, в установлении количественных связей между строением реагентов и природой окружающей среды на скорость и направление химических реакций. Практическое значение механизма реакций определяется возможностью предсказания и направленного поиска лучших путей осуществления процесса, выбора способов его ускорения, катализаторов и т. д. Кроме того, механизм реакции теснейшим образом связан с кинетикой, количественно описывающей зависимость скорости процесса от его параметров и лежащей в основе создания математической модели реакции, выбора оптимальных условий ее осуществления, количественного расчета процесса и химических реакторов. [c.9]

    Экспериментальные данные большинства исследователей экстраполируются в область очень высоких давлений обычно путем нанесения на график обратной константы скорости реакции первого порядка относительно обратного давления (см. рис. 4). Такое экстраполирование действительно, разумеется, только в том случае, если порядок реакции меняется при низких давлениях от первого до второго. Поскольку это положение доказано, вероятно, лучше оценить экспериментальные данные следующим образом. Сакссэ дает для энергии активации величины, лежащие между 70 и 73 ккал, изменение которых происходит в интервале давлений от 20 до 200 мм рт. ст. Результаты при давлении ниже 20 мм рт. ст. совершенно неточны. По данным Стици и Шейна энергия активации имеет величину 70 ккал. Наилучшей поэтому представляется экспериментальная величина 72 2 ккал в интервале давлений 20—500 мм рт. ст. Результаты Кухлера и Тиле не могут быть рассмотрены подробно, поскольку они приводят только данные по константам скоростей, экстраполированные до бесконечного давления. Экспериментальные данные оказыг ваются промежуточными между двумя предсказанными теоретически границами и они указывают на сложность механизма, где имеют место, возможно, реакции обрыва (5а) и (56) и некоторые другие, играющие важную роль. [c.24]

    Анализ движения зоны реакции показывает, что в большинстве случаев, когда наблюдается межфазная турбулентность, начальная скорость переноса примерно в 2 раза выше предсказанной теоретически. Межфазйая турбулентность наблюдается только в системах с химической реакцией и, возможно, вызывается диффузией продуктов реакции через границу раздела фаз. [c.364]

    Предположение об адиабатическом характере химической реакции означает, что поверхность потенциальной энергии основного состояния молекулярной системы полностью определяет ее поведение. Тем самым задача теоретического предсказания возможных механизмов реакции и отвечающих им энергий активации сводится к квантовохимическому расчету поверхности потенциальной энергии для основного терма соответствующей молекулярной системы. В рамках подхода теории абсолютных скоростей реакций требуется в действительности знать не столько саму поверхность потенциальной энергии, сколько ее особые точки. Среди них можно выделить достаточно глубокие минимумы, которые отвечают химически устойчивым соединениям, и более мелкие минимумы (до 40 кДж/моль), отвечающие малоустойчивым структурам. Если переход между исходными соединениями (реагентами) и конечными продуктами реакции осуществляется через подобные малоустойчивые структуры, то мы будем называть их интермедиатами данной реакции. Истинные седловые точки (см. гл. 2) отвечают переходным состояниям, причем, двигаясь между двумя локально стабильными структурами, мы должны пройти, по крайней мере, через одно переходное состояние. [c.138]


    В докладе 35 на примере реакций окисления показана нерсиективность такого подхода для решения общих вопросов катализа предсказания относительной скорости превращения ряда веществ и предсказания оптимального катализатора. Вызывает, однако, удивление, что в своих теоретических построениях авторы не используют представления об энергиях связи реагирующих веществ с катализатором и аддитивную схему расчета энергии активации каталитической реакции. Отметим, что разброс точек на кривых рис. 1 и 2 доклада 35 мог быть меньшим, если использовать для корреляции величины теплот адсорбции на каталитически активных центрах поверхности (а не на всей поверхности катализатора). По этой же причине, возможно, появился бы максимум на корреляционной зависимости для реакции окисления водорода в присутствии металлических катализаторов. [c.385]


Смотреть страницы где упоминается термин Возможность теоретического предсказания скорости реакций: [c.61]   
Смотреть главы в:

Инженерное оформление химических процессов -> Возможность теоретического предсказания скорости реакций




ПОИСК





Смотрите так же термины и статьи:

Возможные реакции



© 2025 chem21.info Реклама на сайте