Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морфогенез в каллусных тканях

Рис. 3.4. Типы морфогенеза в культуре каллусной ткани Рис. 3.4. Типы морфогенеза в <a href="/info/1856522">культуре каллусной</a> ткани

    МОРФОГЕНЕЗ В КАЛЛУСНЫХ ТКАНЯХ КАК ПРОЯВЛЕНИЕ ТОТИПОТЕНТНОСТИ РАСТИТЕЛЬНОЙ КЛЕТКИ [c.172]

    Вторичная дифференцировка каллусной клетки может завершиться образованием в каллусной ткани отдельных дифференцированных клеток. Они имеют определенное строение и выполняют специфические функции. Примером служит образование эпибла-стов — клеток, в которых запасаются вторичные метаболиты. Это наиболее простой тип дифференцировки каллусной клетки. Более сложная гистологическая дифференцировка завершается образованием в каллусе различных тканей млечников, волокон, трихом, элементов ксилемы (трахеи и трахеиды) и флоэмы (ситовидные трубки и клетки-спутницы). К самым сложным видам вторичной дифференцировки относятся органогенез — образование органов и соматический эмбриогенез — образование из соматических клеток эмбриоидов, биполярных зародышеподобных структур. Все эти типы дифференцировки возможны только благодаря тотипотентности любая растительная клетка содержит полный набор генов, характерный для того организма, из которого она была вьщелена. Потенциальные возможности всех клеток этого растения одинаковы каждая из них в определенных условиях может дать начало целому организму. Однако выяснено, что реально детерминируется только одна из 400—1000 клеток, что, вероятно, связано с физиологическим состоянием клетки, с ее компетентностью. Так, у эксплантов стеблевого происхождения компетентны к действию экзогенных фитогормонов и, следовательно, способны к морфогенезу только клетки эпидермальных и субэпидер-мальных тканей (Тран Тан Ван, 1981). Однако компетентность клеток может приобретаться ими в процессе культивирования [c.173]

    МОРФОГЕНЕЗ В КАЛЛУСНЫХ ТКАНЯХ [c.96]

    Морфогенез в культуре каллусной ткани [c.97]

    Условия культивирования. Для успешного культивирования изолированных клеток и тканей растений необходимо соблюдать определенные условия выращивания. Большинство каллусных тканей не нуждается в свете, так как не имеют хлоропластов и питаются гетеротрофно. Исключение составляют некоторые зеленые каллусные ткани, такие, как каллусная ткань мандрагоры. В некоторых случаях каллусные ткани, не способные к автотрофному питанию, все же выращивают на непрерывном освещении, что является необходимым условием дальнейшего успешного морфогенеза, как у люцерны. Большинство же каллусных тканей получают в темноте или при рассеянном свете. [c.82]

    Назовите основные типы морфогенеза в культуре каллусных тканей. [c.159]

    Свет. Большинство каллусных тканей могут расти в условиях слабого освещения или в темноте, так как они не способны фотосинтезировать. Вместе с тем свет может выступать как фактор, обеспечивающий морфогенез и активирующий процессы вторично- [c.162]


    Каллусная клетка имеет свой цикл развития, аналогичный циклу всех других клеток деление, растяжение, дифференцировку, старение и отмирание. Дифференцировку каллусных клеток принято называть вторичной. Однако ее не следует путать с вторичной дифференцировкой, на которой основан морфогенез. Рост каллусных тканей подчиняется общим закономерностям. Кривая роста каллусных тканей также имеет характер -образной кривой (ростовая кривая Сакса) и включает пять фаз, длительность которых неодинакова у разных видов растений (рис. 6.4). [c.169]

    V э т а п (1940—1960 гг.). С открытием в 1955 г. нового класса фито-гормонов-цитокининов, и в частности кинетина, была получена возможность стимулировать деление клеток кусочка ткани сердцевинной паренхимы табака, лишенной проводящих пучков и камбия. В зависимости от концентрации и соотношения стимуляторов роста можно было усиливать деление клеток экспланта, поддерживать рост каллусной ткани, индуцировать морфогенез. В этот период было оценено положительное действие натуральных экстрактов типа эндосперма кокосового ореха, каштана, кукурузы и других растений для поддержания неорганизованного клеточного роста и стимуляции процессов морфогенеза в культуре каллусных тканей и клеточных суспензий. [c.79]

    В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов — цитокининов — оказалось, что при совместном их действии с другим классом фетогормонов — ауксинами — появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях. [c.159]

    Фитогормоны необходимы для дедифференцировки клеток и для индукции клеточных делений. Поэтому для получения каллусных тканей в состав питательных сред должны обязательно входить ауксины, вызывающие клеточную дедифференцировку, и цитокинины, индуцирующие деление клеток. В случае индукции стеблевого морфогенеза содержание ауксинов в среде может быть снижено или они могут быть полностью исключены из питательной среды. [c.81]

    Морфогенезом в культуре каллусных тканей можно управлять. На способность изолированных растительных клеток к морфогенезу оказывают влияние как внутренние, так и внешние факторы. К внутренним факторам относятся видовая принадлежность исходного растения, орган, из которого взят эксплант, возраст экспланта. К внешним факторам прежде всего относятся состав питательной среды, температура, свет (интенсивность и длина фотопериода). Наиболее мощным индуктором морфогенеза, который принято называть стимулом или сигналом морфогенеза, является изменение соотношения между цитокининами и ауксинами, входящими в состав питательных сред. При преобладании цитокининов над ауксинами часто начинается стеблевой органогенез, а в случае преобладания ауксинов над цитокининами — корневой (рис. 3.5). Следует отметить, что из образующихся в культуре каллусной ткани корней почти никогда не регенерируется целое растение, а при стеблевом органогенезе сначала образуется побег, который затем (при пересадке на среду с преобладанием ауксинов) укореняется и дает начало целому растению. [c.98]

    Наибольший интерес вызывает первый путь, фактически представляющий морфогенные процессы. В культуре каллусных тканей морфогенезом называют возникновение организованных структур из неорганизованной массы клеток. [c.173]

    При переходе каллусных клеток к морфогенезу происходит существенное изменение их метаболизма. Морфогенезу предшествует появление в клетках белков-антигенов. Работами Р.Г. Бутенко, Н.И. Володарского и H.A. Моисеевой показано, что морфогенез в культуре каллусных тканей табака характеризуется включением и выключением синтеза определенных белков-маркеров. В меристемах обнаружено два белка-антигена, которые являются маркерами этих клеток. Одновременно показано, что индуцированная детерминация клеток каллусной ткани сопряжена с появлением в ней антигена-маркера клеток меристемы стебля. [c.101]

    Хотя причины и механизмы дифференциации морфогенеза и регенерации растений в культуре клеток и тканей еще далеко не изучены, установлена ведущая роль в индукции морфогенеза фитогормонов в сочетании с физическими факторами, такими, как температура, свет, аэрация. Таким образом, созданы ряд эмпирических приемов управления морфогенезом в культуре клеток и,тканей и возможность их широкого практического применения. При этом соотношение и концентрация цитокининов и ауксинов, а также их искусственных аналогов в таких культурах играют определяющую роль для дальнейшего роста каллусной ткани или морфогенеза и регенерации растения. [c.408]

    Н.А.-Загорской с соавт. [39] было проведено изучение органогенеза у каллусных тканей, полученных из диплоидного и полиплоидного растений табака. При помощи подбора соответствующих стимуляторов роста удалось индуцировать морфогенез у каллуса, возникшего как из дипло-пдного, так и из полиплоидного растений. Однако интенсивность морфогенеза в каллусной ткани, образованной из диплоидного растения, была намного выше. [c.119]

    При изучении двух опухолевых и двух нормальных штаммов табака более высокая способность к морфогенезу оказалась у опухолевых штаммов [ 45 ]. Регенеранты, полученные из опухолевых штаммов, были сильно измененными. Они оказались анеуплоидами с более низким числом хромосом, чем каллусная ткань, из которой были получены регенеранты. Многие регенеранты оказались химерными. Кариологнческий анализ регенерантов табака показал небольшую вариабельность хромосомных чисел у растений, возникших из одного клона, и значительную вариабельность у регенерантов из разных клонов [ 46 ]. За исключением 10 тетраплоидов, все регенеранты оказались анеуплоидными. [c.120]


    В культуре каллусных тканей морфогенезом называют возникновение организованных структур из неорганизованной массы клеток. Существует два основных типа морфогенеза (рис. 3.4). В культуре тканей он может проявляться в виде органогенеза (образования монополярной структуры, т. е. отдельных органов) корневого, стеблевого, реже фло-рального (цветочного) или листового, а также в виде соматического эмбриогенеза (образования биполярных зародышеподобных структур из 96 [c.96]

    Таким образом, различия в балансе экзогенных гормонов ауксиново-го и цитокининового типа определяет, с одной стороны, возможность перехода клетки в культуре к дедифференцировке и неорганизованной пролиферации, а с другой — индукцию вторичной дифференцировки того или иного типа морфогенеза, что было отмечено Ф. Скугом и Е. Миллером (1957). Следовательно, ауксины и цитокинины, вызывающие в зависимости от соотношения либо дедифференцировку и переход к каллусному росту, либо дифференцировку и морфогенез в культуре каллусных тканей, являются не только регуляторами роста, но и регуляторами дифференцировки. [c.98]

    Под влиянием того или иного стимула морфогенеза каллусная клетка должна стать детерминированной, однако не все клетки, а лишь одна из 400—1000 становится на путь регенерации. Следовательно, для перехода к морфогенезу недостаточно индуктора (стимула), а необходимо, чтобы клетка была готова к ответу на него. Способность воспринимать стимулы морфогенеза называют компетентностью клетки. Исследователи пришли к выводу, что компетентность клеток — событие случайное и поэтому столь редкое. В связи с этим напрашивается вопрос о судьбе тех каллусных клеток, которые в силу некомпетентности не способны воспринять стимулы морфогенеза и детерминироваться. В пересадочной культуре эти клетки продолжают делиться и скорее всего становятся на путь перехода к гормононезависимости. Однако не все каллусные ткани со временем завершают развитие возникновением гормононезависимости. Многие из них в силу генетических особенностей продолжают использовать экзогенные гормоны, но полностью утрачивают способность к регенерации. Такие ткани занимают промежуточное положение между привыкшими и свежими каллусными тканями. [c.100]

    Морфогенез в каллусной ткани начинается с того, что под влиянием соответствующих условий детерминированная клетка обособляется от окружающих ее каллусных клеток, образуя утолщенную клеточную стенку. Это явление было обнаружено в 1972 г. Данилино при изучении соматического эмбриогенеза в культуре ткани моркиви. [c.100]

    Работы по поиску новых маркеров морфогенеза продолжаются. Клетки меристематических очагов и клетки, дающие начало эмбриоидным структурам, отличаются от каллусных интенсивным синтезом РНК и ДНК, что связано с особенностями их белкового обмена. Изменения в белковом обмене сходны с теми, которые протекают при дедифференцировке клетки, но итоги у них различны. По мнению Р.Г. Бутенко, специфика реакции определяется не общим усилением синтеза макромолекул, что необходимо для усиленной пролиферации, а теми уникальными синтезами, которые идут на этом общем фоне и обусловливают появление белков регуляторного типа. Переход к морфогенезу в культуре каллусных тканей сопровождается значительными изменениями дыхательного метаболизма. В целом дыхание (по СО2) усиливается, но изменяется его характер в направлении интенсификации пентозофосфатного пути. Возрастает активность дыхательных ферментов. Вслед за биохимической наступает структурная реорганизация клетки. Биохимическая дифференцировка клетки всегда предшествует структурной. В клетках, вступивших на путь морфогенеза, возрастает число рибосом, митохондрий, меняется их внутренняя структура. [c.102]

    Процессы морфогенеза в каллусных клетках протекают асинехронно и продолжительно. Одновременно в каллусной ткани могут иметься как полностью сформированные структуры, так и клетки, только что вступившие на этот путь. [c.102]

    Все изменения, происходящие при морфогенезе и заканчивающиеся регерацией из каллусной клетки растения, управляются (контролируются) специальными генами. В настоящее время одни ученые считают, что признак морфогенеза полигенен и контролируется несколькими хромосомами, другие пришли к заключению, что этот признак определяется двумя ядерными генами. Тот факт, что морфогенетическая активность каллусных клеток имеет генетическую природу, объясняет, почему не удается в ряде случаев получить регенерацию из каллусной ткани тех или иных генотипов. Регенерационную способность может увеличить скрещивание генотипов, морфогенетически активных in vitro. [c.102]

    Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей — использование ее в клеточной селекции. [c.134]

    Существует несколько путей, по которым может идти развитие клетки после ее дедифференцировки. Первый путь — это вторичная регенерация целого растения, возможна дифференцировка на уровне клеток, тканей, органов. Второй путь — это утрата клеткой способности к вторичной дифференцировке и регенерации растения, стойкая дедифференцировка, приобретение способности расти на среде без гормонов, т. е. превращение в опухолевую. Такими свойствами часто характеризуются клетки старых пересадочных культур. Третий путь — это нормальный цикл развития каллусной оетки, заканчивающийся ее старением и отмиранием. В этом случае клетка претерпевает вторичную дифференцировку и прекращает делиться (стационарная фаза роста). Однако такая дифференцировка не ведет к морфогенезу, а закрепляет за ней свойства старой каллусной клетки. [c.96]

    Вторичная дифференцировка каллусных клеток не всегда заканчивается морфогенезом и регенерацией растения. Иногда она приводит только к образованию тканей (гистодифференцировка). Таким путем каллусная клетка может превращаться во флоэмные или ксилемные элементы. Другим примером вторичной дифференцировки может служить превращение дедифференцированной активно пролиферирующей клетки в старую неделящуюся каллусную клетку (стационарная фаза роста). [c.98]


Смотреть страницы где упоминается термин Морфогенез в каллусных тканях: [c.174]    [c.86]    [c.100]    [c.128]    [c.12]    [c.358]    [c.164]    [c.137]   
Смотреть главы в:

Сельскохозяйственная биотехнология Изд2 -> Морфогенез в каллусных тканях




ПОИСК





Смотрите так же термины и статьи:

Каллусная ткань



© 2025 chem21.info Реклама на сайте