Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макромолекул синтезы

    Заслуживает особого внимания реакция ацилирования аминокислот. Другие реакции аминокислот также имеют важное биологическое значение. Папример, как будет показано позднее, в основе всех реакций витамина Вб лежит образование оснований Шиффа (взаимодействие амино- и альдегидной групп гл. 7). Однако именно ацилирование аминогрунны одной аминокислоты карбоксильной (активированной) группой другой аминокислоты приводит к образованию пептидной связи и затем к образованию полимерной молекулы—белка. Для химика-биооргаиика весьма интересно сопоставить синтез наиболее сложных макромолекул в пробирке и в организме. [c.52]


    Модификацией имеющихся полимеров можно быстрее и экономичнее получить новые полимерные материалы. В промышленности используют следующие методы модификации 1) изменение химического строения макромолекул полимера (химическая модификация) 2) изменение физической структуры полимера без изменения его молекулярной массы и химического строения (структурная модификация) 3) применение смесей полимера с другими соединениями. Наиболее часто используется химическая модификация, которая осушествляется введением новых функциональных групп в молекулу полимера, введением новых звеньев в макромолекулу (синтез сополимеров) и получением привитых и блочных сополимеров, а также разветвленных и пространственных полимеров. [c.200]

    Вопросам получения и технического применения сополимеров этого типа посвящена обширная литература, так как методы синтеза привитых сополимеров (как и блок-сополимеров) в значительной степени позволили разрешить проблему контролированных полимеризаций для получения высокомолекулярных соединений с заданными свойствами и заданной структуры [72]. Так, например, прививка водорастворимых боковых цепей к макромолекулам маслорастворимых полимеров, или наоборот, позволяет получать новые высокоактивные эмульгаторы и детергенты. Полиамидные волокна значительно повышают свои эластические свойства после прививки к ним боковых полиэтиленовых цепей. Тефлон (политетрафторэтилен), обладающий очень плохой адгезией к различным материалам. [c.638]

    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Для производства полимеров большое значение имеет чистота мономеров. Примеси в них могут ингибировать реакцию синтеза, оборвать рост макромолекул при полимеризации, нарушить соотношение исходных веществ при поликонденсации и привести к получению полимеров с малой молярной массой и низкими эксплуатационными свойствами. Поэтому к продуктам органического синтеза, используемым в качестве мономеров, предъявляются высокие требования по чистоте и содержанию примесей. [c.320]


    Модификация нитрозосоединениями наиболее распространена при получении резиновых смесей, и механизм взаимодействия нитрозосоединений с диеновыми полимерами и модельными соединениями изучался рядом авторов [52—55]. Показана возможность присоединения к полимерам антиоксидантов и синтеза полидиенов с различными функциональными группами. Смешение полимеров с карбоксильными и аминными группами позволяет осуществить кислотно-основное взаимодействие в макромолекулах и получить системы со специфическими свойствами. [c.239]

    Наиболее часто используется химическая модификация,, которая осуществляется введением новых функциональных групп в молекулу полимера, введением новых звеньев в макромолекулу (синтез сополимеров) и получением привитых и блочных сополимеров, а также разветвленных и пространственных полимеров. [c.547]

    В процессе обмена веществ происходят конформационные изменения макромолекул, синтез и распад различных веществ, образование и потребление энергии, которые обеспечивают проявление физиологических функций организма. Изменение конформации основных белков мышц — актина и миозина, а также использование химической энергии АТФ лежат в основе сократительной функции мышц. Эти процессы наряду с механизмами энергообразования, биосинтеза белка, транспорта веществ и другими биохимическими реакциями существенно изменяются при воздействии различных физических нагрузок и в ходе адаптации к ним, что влияет на физическую работоспособность и состояние здоровья спортсмена. [c.24]

    Следует подчеркнуть, что разветвленность макромолекул каучуков эмульсионной полимеризации убывает с уменьшением температуры синтеза, что объясняется более высокой энергией активации вторичных реакций по сравнению с реакцией роста цепи [23, 24, 26]. [c.66]

    Молекулярную массу полимера можно также изменять добавлением монофункционального мономера в процессе синтеза. При взаимодействии его с растущей полимерной цепью на концах макромолекул не будет функциональных групп [3, с. 72]. [c.163]

    При поликонденсацни, как правило, выделяется низкомолекулярное вещество (Н2О, НС1 и др.), а образующиеся полимеры отличаются по составу от взятых реагентов. Последние поэтому правильнее называть не мономерами, а исходными веществами для синтеза поликонденсационных полимеров. Чтобы происходил непрерывный рост макромолекулы, исходные вещества должны иметь не менее двух функциональных групп, способных реагировать друг с другом. Так, при образовании полиэфиров взаимодействуют гидроксильные и карбоксильные группы  [c.10]

    Приведены методы оценки молекулярных масс, полидисперсности, формы и размеров макромолекул рассмотрены вопросы синтеза волокнообразующих полимеров методами полимеризации и поликонденсации при малых и глубоких степенях конверсии, а также даны основные сведения по химии и физикохимии природных волокнообразующих полимеров целлюлозы, хитина и фибриллярных белков. Изложение основано на количественных примерах и задачах, наиболее часто встречающихся в практике научных и технологических работ. [c.2]

    Технологические процессы синтеза, переработки и использования полимеров практически никогда не реализуются как равновесные. В связи с этим комплекс потребительских свойств полимерных материалов обусловлен тем уровнем структурообразования, который достигается формируемой системой к моменту принудительного прекращения конкретного процесса. Вот почему достаточна строгое описание таких процессов может быть осуществлено при совместном анализе как роли гибкости макромолекул, так и динамики структурообразования в полимерных системах. Иными словами, анализ кинетики процессов в полимерных системах наряду с термодинамическими характеристиками их весьма важен для обоснованного научного прогноза. Это тем более существенно, что как в живой природе, так и во многих вариантах химических технологий осуществляются взаимные переходы гомофазных и гетерофазных полимерных систем, причем истинное равновесное состояние практически никогда не реализуется. [c.9]

    При поликонденсации бифункциональных соединений образуются линейные полимеры (табл. 5.4). Если функциональность мономера больше двух, то образуются разветвленные и трехмерные полимеры. Количество функциональных фупп в макромолекуле при этом возрастает по мере углубления реакции. Для синтеза волокнообразующих полимеров наибольший интерес представляют бифункциональные соединения. [c.263]

    Последний фактор обусловлен особенностями формования полимерного материала переводом высокомолекулярного вещества в вязкотекучее состояние растворением или плавлением и последующим отверждением его во внещнем силовом поле. Скорость протекания всех этих процессов предопределяется гибкостью макромолекул, а направление и степень завершенности - особенностями фазовых равновесий. Вместе с тем процессы синтеза и переработки полимеров никогда не реализуются в технологической практике как равновесные, а прекращаются на стадии, на которой достигается некоторый компромисс между приемлемыми качественными и количественными характеристиками полимерного субстрата, с одной стороны, и технико-экономической эффективностью - с другой. [c.14]


    Полимеры представляют собой неоднородные системы в отношении как формы макромолекул, так и молекулярных масс. Такая физико-химическая неоднородность определяется условиями синтеза и очистки полимера. В отличие от низкомолекулярных соединений полимеры представляют собой смесь макромолекул различной молекулярной массы, часто различающихся даже по химическому составу (сополимеры, производные целлюлозы и хитозана, белки). Полимерные материалы (волокна, пленки) могут быть изготовлены и из смесей полимеров. [c.16]

    Задача. Передача кинетической цепи на неактивную макромолекулу при синтезе полиметилметакрилата приводит к образованию макрорадикала. Константа этого процесса составляет 0,2 10 . Для условий проведения реакции проследите за изменением плотности ветвления при увеличении степени конверсии, если известно, что среднее значение степени полимеризации полимера составляет 1100. Экспериментально было установлено, что степень полимеризации Р при больше 30% меняется незначительно. Какие технологические выводы можно сделать из полученной информации  [c.230]

    Зная величину плотности ветвления к и среднюю молекулярную массу полимера, а также предполагая, что распределение ветвлений носит статистический характер, можно рассчитать долю разветвленных макромолекул, образовавщихся в результате синтеза. [c.230]

    С развитием работ по синтезу искусственных ВМС появилась необходимость в изучении строения макромолекул и их свойств. Большая молекулярная масса ВМС подтверл<далась, главным образом, исследованиями по дпффузии. Одпако на примере поверхностно-активных веществ было показано, что сравнительно низкомолекулярные соединения могут давать в растворе коллоидные частицы значительных размеров. На этом основании в 20-е годы нашего столетия распространилось представление о макромолекулах как ассоциатах из малых молекул, подобных мицеллам ПАВ. Предполагалось, что ассоциация обусловлена сильными, но неко-валептными связями. Эта теория получила название теории малых блоков ее сторонниками были Поляни, Герцог, Каррер, Гесс. [c.310]

    Гомофазная полимеризация акрилонитрила в присутствии 2,2 -азо-бис- изобутиронитрила, меченного по метильной группе " , приводит к получению полимера, в котором на 1 макромолекулу приходится 1,32 фрагмента инициатора. Описать механизм данного синтеза, соответствующий этим результатам эксперимента, и рассчитать соотношение констант скоростей роста и обрыва цепей. [c.278]

    Рассчитать долю разветвленных макромолекул при синтезе полиакрилонитрила, если степень превращения исходного мономера составляет 90%, а в условиях реакции 3,5 10"  [c.282]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]

    Инициирование - начальная стадия синтеза полимеров, при которой происходит превращение небольшой доли молекул мономера в активные центры, способные присоединять к себе новые молекулы мономера с образованием растущей макромолекулы. [c.399]

    Поскольку каждая аминокислота присоединяется поочередно, при химическом синтезе белков очень важен выход на каждой стадии. Вновь обращаясь к синтезу Gly-Ala, отметим, что, если синтез пептидной связи прошел на 90%, такой синтез может считаться удовлетворительным. Однако, если те же условия использованы для синтеза декапептида грамицидина S, то общий выход составит 0,9 X 100% = 35%. При этом не учитываются потери при введении и снятии защитных групп. Следовательно, при синтезе белковых макромолекул образование пептидной связи должно проходить с высоким выходом. [c.68]

    Реакции низкомолекулярных веществ формально подразделяются на присоединение, замещение и отщепление. Для синтеза макромолекул из низкомолекулярных веществ пригодны лишь реакции присоединения и замещения, так как только они приводят к соединению молекул. [c.930]

    III. Реакции, приводящие к увеличению макромолекулы (удлине ние цепи, образование блокполимеров, боковых цепей или сетчато структуры). Они уи<е были рассмотрены при описании синтеза высоко молекулярных веществ. [c.949]

    Кинетику реакции поликонденсации и структуру промежуточных продуктов синтеза исследуют по количеству мономеров, не вступивших в реакцию на различных стадиях процесса, по количеству образующихся побочных продуктов, по возникновению новых структурных звеньев на концах макромолекул. [c.86]

    Суммируя изложенное, сделаем следующие заключения. При реакции роста на ионных парах с локализованной связью С—Mt основным фактором, определяющим конечную структуру полимера, является акцепторная способность противоиона. От нее зависит наличие и.чи отсутствие предориентационных эффектов. Тем не менее даже в оптимальном случае (литиевый противоион в неполярной среде в отсутствие независимых электронодоноров) высокая стереоспецифичность активных центров не является обязательным следствием предориентации. Это показывает сопоставление данных, относящихся к изопрену и бутадиену. Следовательно, конечный результат зависит от стереохимии перехода молекулы мономера из состава я-комплекса в растущую цепь, для которого природа мономера весьма существенна. Отсутствие предориентации (которое может быть обусловлено либо координационной насыщенностью противоиона, либо его низкой акцепторной способностью), так же как и я-аллильное состояние концевой связи С—Mt, приводят к избирательности другого рода, а именно к преимущественному образованию 1,2- или 3,4-звеньев. Эта избирательность не сопровождается, однако, способностью соответствующих активных центров к селективному образованию возможного для таких цепей изо- или синдио-тактического построения макромолекул. Синтез стереорегулярных полимеров подобного рода, осуществленный при использовании катализаторов Циглера — Натта (см. гл. V), ни в одном из случаев полимеризации неполярных мономеров в анионных системах зафиксирован не был 1. Последнее относится и к мономерам стирольного [c.74]

    П )облема регулирования структуры цепи имеет особый смысл при полимеризации полифункциональных монолюров, в частности ненасыщенных карбонильных и амидных производных. Процессы их ионной полимеризации мало исследованы в кинетическом отношении. Основное внимание в посвященных им работах уделяется строению результирующих макромолекул. Синтез стереорегулярных полимеров имеет в этих случаях подчиненное значение на первом плане стоит задача создания чистых структур в ином смысле — избирательная полимеризация с образованием однотипных элементарных звеньев. Более обстоятельно в этом отно- [c.266]

    Антитело - это белок, который синтезируется в организме животного в ответ на проникновение чужеродного макромолекуляр-ного соединения (называемого антигеном или иммуногеном) и который обладает высоким сродством к нему. Небольшие чужеродные молекулы (гаптены) вызывают образование специфических антител только в том случае, если такие гаптены присоединены к макромолекулам. Синтез антител определяется действием отбора, а не инструкции. Антиген связывается на поверхности тех лимфоцитов, которые исходно синтезируют антитела, специфичные к данному антигену. Присоединение антигена к рецеп- [c.257]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Полимеризация бутадиена в углеводородных средах под влиянием литийорганических инициаторов протекает по механизму синтеза живых полимеров и приводит к образованию линейных макромолекул (каучук СКДЛ) молекулярная масса полимеров пропорциональна количеству заполимеризованного мономера, а ММР является чрезвычайно узким [21]. [c.180]

    Если на второй стадии синтеза применить диамин, то можно получить литьевые эластомеры с высокой твердостью (80—97 по Шору А). Удлинение цепи осуществляется с помощью мочевинных звеньев, а сщивание макромолекул — с помощью биуретовых (со отнощение N O диамин > 1)  [c.529]

    Для синтеза полиэфирных смол могут применяться ненасыщенные спирты и кислоты. Промышленное значение имеют ненасыщенные полиэфиры, получаемые поликонденсацией гликолей с малеи-новым и фталевым ангидридами. Ненасыщенные полиэфиры способны в определенных условиях ог-верждаться (образовывать сетчатые структуры). Макромолекулы линейных ненасыщенных полиэфиров могут сшиваться также при введении мономеров (стирола, бутадиена). [c.73]

    К настоящему времепм удалось промоделировать в основном только гидролитические ферментативные процессы, но вполне реально, что в скором будущем станет возможным ступенчатый синтез макромолекул, таких, скажем, как белки и нуклеиновые кислоты. Например, если вещества со структурой, напоминающей рецепторы для лекарственных препаратов, удастся включить в синтетические мембраны, то станет возможным изучение этих рецепторов без каких-либо осложнений иммунологического и токсикологического характера. Кроме того, способность мембран разделять заряженные частицы может найти промышленное применение в системах для накопления энергии или производства водорода. [c.265]

    Ионообменные смолы получают дву> я методами поликонденсацией нли полимеризацией. В обоих методах процесс синтеза состоит из трех стадий 1) получение линейных полимеров, 2) образование сетчатой структуры из отдельных линейных полимеров с помощью мостнкообразователей, 3) введение в макромолекулы активных (ионогекных) групп. Активные группы могут находиться уже в исходном мономере или их вводят в него перед построением матрицы. В качестве примера синтеза катионообменных поликоп-денсационных смол можно привести поликонденсацию фенола с формальдегидом  [c.165]

    В качестве исходных веществ для получения полимеров используют ненасыщенные пли полифункциональные низкомолеку лярные соединения (мономеры). Основными методами синтеза полимеров являются реакции полимеризации и поликонденсации. Полимеризацией называется реакция соединения молекул моноч мера, в результате которой образуются макромолекулы, не отличающиеся по составу от исходного мономера. Эта реакция на сопровождается выделением побочных продуктов. Типичным при< мером является образование полиэтилена из этилена  [c.305]

    Во 2-м издании книги большее внимание уделено способам количественной оценки гибкости (жесткости) макромолекул, а также кинетическим аспектам афегатных и фазовых переходов в полимерных системах. Включен новый раздел, посвященный реологии растворов и расплавов полимеров. Коренной переработке подвергнуты также разделы, связанные с синтезом полимеров, описанием свойств и превращений природных волокнообразующих полимеров. Наряду с целлюлозой определенное внимание уделено хитину и хитозану, являющимся интересными волокнообразующими полимерами. Введен раздел, посвященный химии и физикохимии фибриллярных белков фиброину, кератину, коллагену. Примеры и задачи, приведенные во втором издании книги, взяты из исследовательской и технологической практики авторов книги. [c.9]

    Существуют нуклеиновые кисло1ы двух типов более стабильная дезоксирибонуклеиновая кислота (ДНК), являющаяся хранителем генетической информации менее стабильная рибонуклеиновая кислота (РНК), взаимодействующая с ДНК. Она выполняет роль матрицы, переносящей И11формацию об определенной последовательности аминокислотных звеньев в полипептидной цепи с макромолекул ДНК с помощью так называемого расомного механизма . Описание особенностей протекания процесса синтеза белка в живых организмах выходит за рамки этого пособия. [c.349]

    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]

    Большинство ученых в настоящее время полагает, что эволюция кизни прошла через четыре стадии. Вначале происходило образование небольших молекул (амииокислот, нуклеотидов, сахаров). Из этих строительных блоков образовывались затем макромолекулы, такне, как белки и нуклеиновые кислоты. На третьей стадии происходило образование клеточиоподобной структуры, способной К самовоспроизводству. На последней стадии эта примитивная клетка эволюционировала в современную клетку, содер кащую генетическую программу синтеза белка. [c.181]

    Для того чтобы избежать образования макромолекул, при синтезе циклических соединений используют принцип разведения Руггли — Циглера. И наоборот, для получения высокомолекулярных веществ реакцию ведут в условиях, неблагоприятных для замыкания кольца. [c.930]

    При синтезе высокомолекулярных веществ из бифункциональных соединений образуются (если не учитывать побочных реакций) линейные макромолекулы. Использование соединений с числом функциональных групп более двух приводит к разветвленным макромолекулам. Полимеры с разветвленной цепью еще сохраняют растворимость и, следовательно, их можно исследовать теми же методами, что и растворимые линейные высокомолекулярные вещества. Однако по мере того как реакция соединения олигофункциональных компонентов приводит к образованию новых разветвлений, все большее число образовавшихся сначала макромолекул связывается друг с другом, и в конечном итоге образуется сеть связанных между собой молекулярных цепей. Такие высокомолекулярные вещества сетчатой структуры нерастворимы, а иногда даже очень ограниченно набухают. Поэтому их нельзя уже исследовать и характеризовать с помощью методов, применяемых для исследования растворимых высокомолекулярных веществ. [c.930]

    Высокомолекулярные соединения представляют собой смеси макромолекул с различной длиной цепи, а иногда и различной структуры, что определяется условиями синтеза полимеров. Неоднородность макромолекул полимера по размерам и структуре часто объединяют понятием полндисперсность по молекулярному весу, или м а к р о м о л е к у л я р -пая п о л и д и с п е р с н о с т ь. [c.73]

    Степень полидисперсности ависит от свойсти исходных мономеров и условий получения полимера. При одинаковых условиях синтеза степень полидисперсности полимера тем выше, чем более реакционноспособны конечные и промежуточные продукты реакции, так как в этом случае процесс синтеза полимера сопровождается разнообразными побочными реакциями. В результате побочных реакций в отдельных звеньях полимерных цепей возникают боковые ответвления, появляются звенья циклической структуры, происходит отщепление различных низкомолекуляр-иых соединений с образованием в макромолекулах двойных связей или новых функциональных групп, по месту которых возможно последующее соединение со звеньями соседних макромолекул. [c.74]


Смотреть страницы где упоминается термин Макромолекул синтезы: [c.311]    [c.73]    [c.352]    [c.12]    [c.85]   
Углублённый курс органической химии книга2 (1981) -- [ c.402 ]




ПОИСК







© 2025 chem21.info Реклама на сайте