Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты дыхательные

    Напишите формулу убихинона в окисленном и восстановленном виде. Назовите фермент дыхательной цепи, катализирующий окисление убихинона. [c.119]

    Как уже отмечалось, с внутренней мембраной митохондрий связаны ферменты дыхательной цепи. Кроме того, она обладает АТФ-азной активностью, связанной с механизмом окислительного фосфорилирования. Маркерным ферментом для идентификации внутренней мембраны митохондрий служит цитохромоксидаза. [c.198]


    Цитохромоксидаза (важный фермент дыхательной цепи клетки). [c.357]

    Цитохромоксидаза. Конечным ферментом дыхательной цепи, окисляющим цитохром с и передающим электроны молекулярному кислороду, является цитохромоксидаза, которая в настоящее время рассматривается как комплекс цитохромов а и аз. [c.155]

    Фосфолипиды являются структурными компонентами клетки и, входя в состав различных мембран, в том числе и цитоплазматической, играют существенную роль в характере ее проницаемости. Входящие в состав митохондрий липиды также почти целиком представлены фосфолипидами. Предполагается, что они ответственны за структуру и пространственное расположение ферментов дыхательной цепи и принимают активное частие в переносе электронов. [c.317]

    Мембраны, в которых локализованы ферменты дыхательной цепи и окислительного фосфорилирования, называют сопрягающими мембранами. Примерами таких мембран являются внутренняя мембрана митохондрий, клеточная мембрана аэробных бактерий с дыхательным типом энергетики, хроматофоры фотосинтезирующих бактерий и мембраны тилакоидов хлоропластов зеленых растений. Отличительным признаком сопрягающих мембран является их способность образовывать АТФ за счет энергии внешних ресурсов. [c.398]

    У некоторых групп животных имеются свойственные только им соединения — специфические ферменты, дыхательные пигменты, переносчики электронов и др. Даже гемоглобин у разных млекопитающих имеет свою специфику (меняются форма кристаллов, изоэлектрическая точка, соотношение метионина и цистина и др.). Отмечена направленная эволюция ряда биохимических систем, которая совершается с одинаковой последовательностью в разных филогенетических ветвях. Виды и роды по ряду биохимических параметров различаются между собой. [c.189]

    Тканевый (гистотоксический) тип гипоксии обычно обусловлен нарушением способности тканей поглощать кислород из крови. Утилизация кислорода тканями может затрудняться в результате угнетения биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки. Типичным примером тканевой гипоксии может служить отравление цианидами. Попадая в организм, ионы СМ активно взаимодействуют с трехвалентным железом, тем самым блокируя конечный фермент дыхательной цепи—цитохромоксидазу, в результате чего подавляется потребление кислорода клетками. Иными словами, при гистотоксической гипоксии ткани не в состоянии извлекать кислород из тканевых капилляров даже при высоком Рд,. [c.596]

    Движение клеток и организмов, выполнение ими механической работы например, мышечной) производятся особыми сократительными белками, служащими рабочими веществами этих процессов. Сократительные белки выполняют ферментативную, АТФ-азную функцию, реализуют превращение химической энергии (запасенной в АТФ, с. 40) в механическую работу. Зарядка аккумулятора , т. е. окислительное фосфорилирование, происходит в мембранах митохондрий при непременном участии ферментов дыхательной цепи. Окислительно-восстановительные ферментативные процессы происходят и при фотосинтезе. Другие мембранные белки ответственны за активный транспорт молекул и ионов сквозь мембраны и, тем самым, за генерацию и распространение нервного импульса. Белки определяют все метаболические и биоэнергетические процессы. [c.87]


    В основном ферменты синтеза нуклеиновых кислот, а в митохондриях — ферменты процессов аэробного окисления углеводов и жирных кислот (весь набор цикла лимонной кислоты), превращения отдельных аминокислот. В мембранах митохондрий локализованы ферменты дыхательной цепи и процессов окислительного фосфорилирования, катализирующие реакции образования АТФ. В рибосомах сосредоточены ферменты биосинтеза белка, а в лизосомах — ферменты гидролитического расщепления различных веществ. Каждый фермент катализирует определенную специфическую реакцию, что обеспечивает упорядоченность многостадийных метаболических процессов. [c.89]

    Схема наглядно иллюстрирует исключительную роль аминокислот как при синтезе нуклеиновых кислот, так и в образовании ферментов дыхательной цепи. Вспомним, что именно дыхательная цепь и доставляет большую часть энергии, необходимой для синтезов, в форме энергии связей АТФ. Линии (П1) и показывают путь синтеза АТФ из АДФ и Ф в результате работы дыхательной цепи и отчасти развития процесса гликолиза (I). Ацетил-КоА, как известно, выполняет работу по синтезу жирных кислот и жиров. Линии I и IV показывают (упрощенно) путь синтеза жиров и липидов. [c.123]

    Медь способствует росту организма, усиливает процессы кроветворения, влияет на скорость окисления глюкозы и распад гликогена. Она входит в состав ферментов дыхательной цепи, повышает активность липазы, пепсина и других ферментов. Для взрослых людей недостаточность меди не характерна. [c.71]

    Ферменты дыхательной цепи и окислительного фосфорилирования локализованы во внутренней мембране митохондрий и функционируют в форме высокоорганизованных комплексов. [c.402]

    Цель занятия изучить процессы передачи протонов и электронов при участии ферментов дыхательной цепи. [c.113]

    Нейроны, требующие большого количества энергии, красные мышечные волокна , служащие для длительной работы. Эти клетки (ткани) имеют хорошее кровоснабжение в их митохондриях высока активность ферментов дыхательных цепей. Поэтому в них происходит аэробный распад глюкозы через пируват до СО2 и Н2О, что дает 38 молекул АТФ на 1 моль глюкозы. [c.163]

    Около 90% всего потребляемого кислорода восстанавливается цитохро-моксидазным ферментом дыхательной цепи митохондрий по уравнению [c.207]

    Умеренный сдвиг pH в кислую сторону активирует работу ферментов дыхательного цикла в митохондриях и усиливает аэробное энергообразование. Значительное изменение pH среды в мышцах от 7,1 в состоянии покоя до 6,5 при изнеможении угнетает ферменты, регулирующие скорость гликолиза и сокращение мышц. При значении внутримышечного pH 6,4 прекращается расщепление гликогена, что вызывает резкое снижение уровня АТФ и развитие утомления. [c.315]

    Определенный режим тренировки, как и интенсивность упражнений, оказывает непосредственное влияние на характер и величину адаптационных изменений в скелетных мышцах. В работе Э.А. Андриса и Н.И. Волкова исследовалось влияние 16-недельной экспериментальной тренировки в длительном непрерывном и интервальном беге на развитие аэробной и анаэробных метаболических систем в скелетных мышцах крыс. После такой тренировки в указанных режимах активность сукцинатдегидрогеназы (СДГ) — одного из ключевых ферментов дыхательного цикла в мышцах, несущих основную нагрузку при беге, заметно увеличилась (рис. 198). [c.417]

    Наиболее изучены следующие системы ферментов системы гликолиза, окисления жирных кислот, цикла трикарбоновых кислот, ферменты дыхательной системы (переноса электронов), преобразования и синтеза аминокислот, синтеза белков, синтеза липидов, образования мочевины, синтеза пуринов и пиримидинов п синтез ДНК и РНК. [c.159]

    Ферменты могут работать согласованно, не будучи связанными друг с другом, например ферменты гликолиза иногда образуются ферментные комплексы, в которых ферменты ассоциированы и работают взаимозависимо. Так, в синтетазе жирных кислот семь ферментов объединены в один активный комплекс, при распаде его активность исчезает. К надмолекулярным активным комплексам относятся также мембранные ферменты (транспортные ферменты, ферменты дыхательной цепи), которые иногда называют мультиферментами или ферментами с несколькими активными центрами. [c.36]

    Все же трудно переоценить последствия, которые могут возникнуть при нарушении деятельности ферментов дыхательного цикла. Инактивация цинксодержащих ферментов должна сказаться на активности других, самых разнообразных ферментных систем, непосредственно не связанных в своем действии с этим металлом. Прямым следствием нарушений в гликолитическом цикле и цикле ди- и трикарбоновых кислот могут явиться различные отклонения в реакциях цепи дыхания, переноса электронов от различных субстратов, в том числе и кислот цикла Кребса, к кислороду. При этом изменится в первую очередь деятельность окислительных ферментов. [c.138]

    В организме существуют другие циклы реакций, поддерживающих энергетический метаболизм. Например, в цикле лимонной кислоты (цикл Кребса или цикл трикарбоновых кислот) (13, В) щавелевоуксусная кислота расщепляется и затем снова регенерирует, в то время как органический субстрат превращается в СОг и метаболический водород [Н]. Последний обычно окисляется атмосферным кислородом с помощью ферментов дыхательной цепи (13, Г). [c.20]


    II ш уровне дыхательной цепи. В последнем случае О. ф. сопряжсно с переносом электронов поступающих от восста-ювлспньгх коферментов, гл. обр. НАДН, по цепн фермен-itB (ферменты дыхательной цепи). Осн. субстраты О. ф.— органические к-ты, образующиеся в цикле трикарбоновых [c.399]

    Одним из компонентов дыхательной цепи митохондрий является коэнзим Q, или убихинон. Это соединение способно к редокс-превраще-ниям и присутствует в митохондриях в количествах, более чем на порядок превышающих содержание ферментов дыхательной цепи. Коэнзим Q акцептирует электроны от дегидрогеназ, локализованных во внутренней мембране митохондрий (сукцинат- и НАДН-дегидроге-назы), и передает их комплексу III (с. 415). Согласно хемиосмоти-ческой гипотезе Митчела, в процессе редокс-превращений коэнзим Q осуществляет векторный перенос протонов через мембрану в так называемом Q-цикле . Реакция переноса электронов и протонов с участием коэнзима Q в комплексе III сопровождается высвобождением энергии, достаточной для синтеза одной молекулы АТФ. [c.421]

    Особенность деятельности оксидоредуктаз в живой клетке состоит в том, что они образуют системы или цепи окислительно-восстановительных ферментов (дыхательные цепи), в которых осуществляется кшогоступенчатый перенос атомов водорода или электронов от первичного субстрата к конечному акцептору, как правило, кислороду. В конце концов атомы водорода переносятся на кислород и образуется вода. [c.136]

    Восстановленные флавиннуклеотиды оксидаз Ь- и о-аминокислот могут непосредственно окисляться молекулярным кислородом, образуя пероксид водорода, который подвергается расщеплению под действием каталазы на воду и кислород. НАДН окисляется ферментами дыхательной цепи митохондрий с образованием конечного продукта — воды и молекулы АТФ, которая синтезируется в процессе сопряженного окислительного фосфорилирования. [c.373]

    Токсическое действие. Острое действие обусловлено образованием цианидов и блокадой ферментов дыхательной цепи. Интоксикация сопровождается угнетением дыхания, цианозом, судорогами. Характерно действие на железы внутренней секреции, преимущественно на щитовидную. Угнетают транспорт хлорид-аниона (СГ) через слизистую желудка, что приводит к нарушению образования соляной кислоты. Подавляют эритропоэз. Способны проникать в организм через неповрежденную кожу. Обладают аллергенным и гонадотоксическим действием. [c.701]

    Для того чтобы два тесно сопряженных между собой процесса—перенос электронов и гликолиз, каждый из которых нуждается в АДФ,— могли функционировать непрерывно, количество АДФ в системе должно быть достаточно большим. Если отношение АДФ/АТФ в клетке понизится, то замедление реакции должно, по-видимому, начаться сначала в той системе, которая обладает меньшим сродством к АДФ. Поскольку ферменты системы гликолиза имеют более высокую константу Михаэлиса для АДФ, чем ферменты дыхательной цепи, то можно предсказать, что в аэробных условиях, когда АДФ легко превращается в АТФ в ходе реакции окислительного фосфорилирования, процесс гликолиза начнет замедляться и затем совсем прекратится. Подавление брожения воздухом фактически впервые обнаружил Пастер. Однако высказывались и другие предположения относительно механизма этого явления, получившего название эффекта Пастера. Так, например, ортофосфат требуется для окислительного фосфорилирования и в то же время служит субстратом для гликолити чес кого фермента глицеральдегид-З-фосфатдегидрогена-зы. Следовательно, убыль фосфата в результате окислительного фосфорилирования может привести к торможению гликолиза. Другая интерпретация эффекта Пастера вытекает из попытки ответить на вопрос почем,у злокачественные ткани образуют в аэробных условиях в значительных количествах лактат, в то время как нормальные ткани этим свойством не обладают В этом случае происходит нарушение того механизма регуляции, с которым мы уже познакомились. Этот эффект можно объяснить по аналогии [c.55]

    Позже Гаррет и Насон [71] сообщили, что N. rassa не может использовать нитрат в качестве акцептора электронов в конечной реакции дыхательного пути или образовывать нитрат-редуктазный фермент дыхательного типа. Этот неожиданный результат, если он [c.292]

    Для правильной работы большого числа звеньев биологических машин необходимо не только соблюдать последовательность включения отдельных химических механизмов — процессов гликолиза, цикла Кребса, ферментов дыхательной цепи и т. д., но и расположить в пространстве все соответствующие химические аппараты так, чтобы продукт, полученный в одном из них, легко попадал в следующий. Без этого невозможен слаженный ход химических машин и, конечно, невозможно и четкое регулирование их действия. Отсюда следует, что клетка — это не просто сосуд, где беспорядочно, как в растворе, рассеяны ферменты, субстраты, гормоны и т. д. Клетка действительно напоминает механизм, назначение которого поддерживать свое существование и обеспечивать устойчивость организма в целом. В биологической клетке, как и во всякой машине, детали размещены строго определенным образом клетка имеет структурно химическую организацию. Исходя из общих соображений, относящихся к характерным особенностям жизни, попробуем выяснить, какие же процессы О бя-зательно должны протекать в клетке и в каком порядке они должны сочетаться. [c.156]

    Каков же механизм регуляторного переключения обмена, как осуществляется повышение скорости аэробного гликолиза и каким образом происходит его торможение Существующие представления о механизме П. Э. не отвечают на поставленные вопросы. В 1941 г. Линен [3] и Джонсон [4] независимо друг от друга выдвинули гипотезу о механизме П. Э. Эту гипотезу затем дополнили Линен [5] и другие авторы [6, 7], и в настоящее время она наиболее популярна, как это видно из дискуссии на симпозиуме по регуляции клеточного метаболизма, происходившем в Кембридже в 1958 г. Гипотеза связывает П. Э. с дыхательным фосфорилированием и с кругооборотом фосфата в клетке. Скорость гликолиза и дыхания лимитируется одним и тем же фактором — концентрацией неорганического фосфата и адениннуклеотидов. Химическое сродство ферментов дыхательного фосфорилирования ставит их при конкуренции за эти вещества в преимущественное положение по сравнению с ферментами гликолиза. В результате этого адениннуклеотиды и неорганический фосфат оказываются сосредоточенными на митохондриях (М), по месту локализации ферментов дыхательного фосфорилирования, и, следовательно, пространственно обособлены от ферментов гликолиза, локализованных в гиалоплазме [6, 7]. [c.107]

    Ферменты дыхательные — ферменты, осуществлякадие тканевое, или клеточное, дыхание с образованием Н3О и СОа. Биологическое окисление сопровождается отщеплением водорода от субстрата (дегидрирование). Ферменты, катализирующие эти реакции, относятся к классу оксидореадг1 аз. Общая схема их может быть представлена таким образом  [c.135]

    Цитохромы — система ферментов дыхательной цепи, осуществляющая перенос электронов от восстановленного убихинона (КоОНз) к кислороду. Содержат атомы железа, которые, изменяя свою валентность, могут присоединять и отдавать электроны. Эмульгаторы — вещества, понижающие поверхностное натяжение жировых частиц, что приводит к дроблению их на более мелкие и образованию жировой суспензии. К ним относятся соли жирных кислот, мыла, сода, щелочи и др. в организме — желчные кислоты. [c.494]

    Определена локализация некоторых ферментов дыхательного пути у My oba terium phlei. Оказалось, что в процессе окисления НАДН участ- [c.46]

    Флавиннуклеотиды. К оксидоредуктазам, в частности к ряду ферментов дыхательной цени, относятся также флавопротеиды, кофакторами которых служат производные рибофлавина (витамина Bg) — флавиннуклеотиды. Наиболее изучены флавинадениндинуклеотид (ФАД) и флавинмонону-клеотид (ФМН). ФАД представляет собой несимметричный пирофосфат, с одной стороны этерифицированный рибофлавином, а с другой— аденозином. ФМН является эфиром рибофлавина и фосфорной кислоты  [c.254]

    Дыхание в основном осуществляется митохондриями. В клетке в зависимости от ее типа и характера функций может находиться от 50 до 500 митохондрий (клетки печени содержат 1000 митохондрий). В митохондриях сконцентрированы в структурно упорядоченную систему основные ферменты, участвующие в окислительно-восстановительных процессах клеточного дыхания. Ферменты дыхательной цепи составляют более 25% белка митохондриальных мембран. Это дает основание считать, что они являются функциональными и структурными элементами митохондрий. Дыхательная цепь—это своего рода силовая станция митохондрий, преобразующая энергию дыхания в энергию фосфатных связей, а также в механическую, химическую и осмотическую энергию. [c.357]

    Обзор исследований по окислению и фосфорилироваиию в мировой литературе позволяет сделать заключение, что ферменты дыхательной цепи in vitro способны к переносу электронов двумя различными способами, из которых один сопряжен с фос- [c.367]

    Клеточные мембраны представляют собой поверхностные периферические структуры, ограничивающие внутреннее содержимое клетки от внещней среды, а у эукариот, кроме того, разделяющие внутреннюю часть клетки на функционально значимые отсеки — компартаменты (ядро и митохондрии). Основные функции клеточных мембран заключаются в изоляции клеток от межклеточной жидкости, создании внутренней архитектуры клетки, преобразовании энергии (ферменты дыхательной цепи), поддержании градиента концентраций различных веществ и электрохимического градиента, транспорте питательных веществ и продуктов жизнедеятельности организмов, передаче нервных импульсов и т. д. [c.442]

    СО2, выходящий из клетки, и NADH, который служит главным источником электронов, переносимых дыхательной ценью - так называется электронтраиспортная цепь митохондрий. Ферменты дыхательной цепи встроены во внутреннюю митохондриальную мембрану и необходимы для процесса окислительного фосфорилирования, дающего большую часть АТР в животных клетках. [c.432]


Смотреть страницы где упоминается термин Ферменты дыхательные: [c.293]    [c.231]    [c.399]    [c.627]    [c.7]    [c.11]    [c.236]    [c.63]    [c.102]    [c.158]    [c.432]    [c.85]   
Органическая химия. Т.2 (1970) -- [ c.718 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.702 ]

Биохимический справочник (1979) -- [ c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды



© 2025 chem21.info Реклама на сайте