Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксилемный транспорт

    Радиальный и ксилемный транспорт элементов минерального питания [c.263]

    Строение ксилемы и механизм ксилемного транспорта воды [c.290]

    Другой мощный регулятор ксилемного транспорта — транспирация, интенсивность которой контролируется устьичным аппаратом. Механизм устьичной регуляции обсуждается в разделах 5.4.3 и 13.6.11. [c.294]

    Передвижение веществ по растению на дальние расстояния осуществляется по проводящим пучкам. По сосудам и трахеидам ксилемы вещества с водным током транспортируются от корней к верхушкам побегов. Движущие силы ксилемного транспорта — корневое давление и транспирация. Отток ассимилятов из листьев и из запасающих органов идет по ситовидным трубкам флоэмы. Загрузка как ксилемных (в корнях), так и флоэмных окончаний (в листьях) происходит благодаря деятельности активных мембранных насосов (Н -помп), которые функционируют в плазмалемме живых клеток, окружающих сосуды и ситовидные трубки. Вслед за поступлением осмотически активных веществ в сосуды и ситовидные трубки по осмотическим законам входит вода, и дальнейшее передвижение веществ по сосудистой системе осуществляется в результате возрастающего гидростатического давления. [c.300]


    Считается, что передвижение гиббереллинов в растении происходит вместе с нормальным током веществ в проводящих тканях флоэмы и ксилемы, так как они обнаружены и в ксилем-ном, и во флоэмном соке. Однако в одном случае передвижение гиббереллинов нельзя объяснить ни флоэмным, ни ксилемным транспортом. Это движение от предполагаемого места синтеза [c.172]

    В последнее время в связи с транспортом железа рассматривается присутствие в ксилемном соке растений естественных хелатообразователей. [c.279]

    Сахара часто перемещаются по флоэме на расстояние нескольких метров со скоростью до 100 ом/ч. Такие расстояния и скорости слишком велики, чтобы считать диффузию главным транспортным механизмом. Для эффективного флоэмного транспорта требуются живые ситовидные трубки, способные к активному метаболизму. Вот почему флоэмный транспорт тормозится при кольцевании стебля, приводящего к гибели всех живых клеток в небольшой зоне вокруг стебля. При этом вода может достигнуть листьев через неповрежденные ксилемные трубки, но сахара не проходят через флоэму окольцованной зоны. Аналогичным образом ингибиторы дыхания могут вос-препятствовать транспорту образовавшихся при фотосинтезе ассимилятов. [c.249]

    Ксилемный и минеральных веществ описаны в предьщущих главах транспорт (см. 5,4.4 и 6.11.2). В этом разделе будут изложены общие положения и некоторые дополнительные сведения. [c.290]

    Как следует из табл. 8.1, флоэмный сок содержит разнообразные ионы. С помощью радиоактивных изотопов установлено, что из ксилемного сока во флоэмный легко циркулируют калий, натрий, магний, фосфор, азот. Микроэлементы — железо, марганец, цинк, молибден - способны перемещаться по флоэме из зрелых в молодые растущие листья. Циркуляция ионов между ксилемой и флоэмой осуществляется следующим образом. В ситовидную трубку ионы могут попадать как путем транспорта из клеток мезофилла, так и не выходя за пределы листовой жилки, при участии паренхимных клеток, в клеточных стенках которых образуются многочисленные выросты цитоплазмы ( лабиринты ). Клетки с таким строением сгенки, как правило, активно участвуют в транспорте ионов и называются переходными передаточными). Лабиринты в стенках могут быть поляризованы. Например, у переходных клеток ксилемы стебля и листовых черешков выросты цитоплазмы есть лишь в стенке примыкающей к сосуду, что может [c.297]

    Образующиеся в листьях продукты фотосинтеза (фотосинта-ты), а также вода и минеральные вещества, поглощенные корнями, потребляются всеми растительными клетками. Дв1ижение . или транслокация, всех этих веществ по растению осуществляется по специализированным транспортным элементам, присутствующим во флоэме и ксилеме. В то время как ксилемный транспорт направлен главным образом от корня к стеблю, флоэмный транспорт может происходить как вверх, так и вниз,.. причем для каждого направления используется свой индивидуальный ряд элементов ситовидных трубок. [c.255]


    Как видно из данных рис. 40, автор уловил только автоколебания диаметра стебля с периодом, составляющим, как минимум, 2—3 ч. В корнях и листьях установлены значительно более короткопериодные автоколебания транспорта воды. Остается предполол ить, что или в стебле действительно нет таких автоколебаний, или же (что более вероятно) чувствительность использованного автором датчика не позволила ему их обнаружить. Так или иначе, но периодические микроколебания диаметра стебля могут иметь самое непосредственное отношение к его транспортной функции, В самом деле, благодаря таким колебаниям ложе водного тока в процессе ксилемного транспорта не остается пассивным, как пассивны трубы водопроводов при прохождении по ним воды. Так вновь возникает, казалось бы, [c.148]

    Регуляция ксилемного транспорта. Загрузка ксилемы обусловлена прежде всего функциональной активностью Н+-помпы и других ионных насосов в клеточных мембранах поглощающей зоны корня. Эта активность непосредственно связана с энергетикой дыхания и поэтому зависит от обеспеченности корня ассимилятами и кислородом. Роль фитогормонов в загрузке ксилемы изучена недостаточно. [c.294]

    Высшие растения имеют две протяженные транспортирующие системы. Одна из них—ксилемная — состоит из непрерывных трубок, образованных мертвыми клетками, по которым вода и растворенные в ней минеральные питательные вещества транспортируются из корней в листья. Вторая система — флоэмпая более сложна и менее изучена в ней с очень небольшой скоростью (не более нескольких сантиметров в час) из взрослых листьев в молодые растущие ткани транспортируются продукты фотосинтеза. По флоэме перемещается концентрированный до 16% раствор универсального энергетического продукта метаболизма растений — сахарозы, а также аминокислоты и белки в значительно меньших концентрациях. Транспорт внутри растений на большие расстояния осуществляется только по этим двум системам и только водорастворимых веществ. [c.54]

    Утолщенные целлюлозньге участки клеточной стенки развивающихся ксилемных клеток впоследствии укрепляются путем отложения лигнина, нерастворимого полимера, состоящего из ароматических фенольных единиц, которые образуют внутри клеточной стенки разветвленную сеть с поперечными сщивками и составляют основу древесины. В результате локального удаления материала из торцевой части клеточной стенки образуются жесткие сосуды с низким сопротивлением, которые используются для транспорта воды в ксилеме (рис. 20-16). Аналогичная значительная перестройка первичной клеточной стенки происходит при разви- [c.394]

    Благодаря сочетанию ксилемного и флоэмного транспорта по растению циркулирует множество разнообразных веществ, в том числе минеральные элементы, азотистые соединения и растительные гормоны (рис. 8.2). Минеральные ионы, например, сначала поглощаются из почвы, а затем транспортируются в надземную часть растения главным образом по ксилеме. По мере старения листьев из них выводятся некоторые подвижные элементы (такие, как К" , Н2РО4-, Mg2+), которые с потоком транспортируемой сахарозы переносятся по флоэме к акцептору. При недо- [c.245]

    Передвижение воды по стеблю — ксилемный, или дальний, транспорт — большей частью представляют себе как пассивное движение по непрерывному акропетальному градиенту водного потенциала при участии двух концевых двигателей — нижнего (корневое давление) и верхнего (присасывающее действие транспирации), полагая, что никаких промежуточных двигателей в стебле нет. Правда, движению воды способствует непрерывность водной фазы в растении — от эпидермальных клеток корня до мезофилла листа — и колоссальное натяжение водных нитей в сосудах за счет свойственных воде огромных сил сцепления (см. главу I). Именно благодаря натяжению водных нитей в сосудах и непрерывности водной фазы всякое воздействие на лист, изменяющее скорость транспирации, или на корневую систему, изменяющее скорость поступления воды, влекут за собой мгновенную гидродинамическую реакцию, улавливаемую с помощью чувствительного датчика и аналогичную пульсовой волне в системе кровообращения. Скорость волны во много раз превышает скорость передвижения самой жидкости. Гидродинамические реакции возникают раньше биоэлектрических и, возможно, выполняют в растении даже какую-то информационную роль [337]. Но гидродинамические реакции к промежуточным двигателям непосредственного отношения не имеют. Теория промежуточных двигателей, как отмечает Н. А. Максимов [234], была опровергнута рядом опытов. Так, Е. Ф. Вотчал в своем обширном труде, опубликованном в 1897 г., установил, что вода движется по положенному горизонтально живому отрезку древесного ствола в несколько метров длиной с одинаковой скоростью как от нижнего конца к верхнему, так и наоборот, от верхнего к нижнему и что, следовательно, в древесине отсутствуют какие-либо клапаны, не пропускающие воду вниз а без таких клапанов не могли бы работать предполагаемые двигатели. Подобные же наблюдения были сделаны и другими учеными. Страс-бургеру (1893) и другим исследователям удалось показать, что введенные в перерезанные сосуды ядовитые растворы, например растворы пикриновой кислоты, беспрепятственно поднимаются по древесному стволу на много метров вверх, вплоть до самых листьев, хотя и отравляют на своем пути живые клетки. Точно так же удалось наблюдать беспрепятственное поднятие воды через участки травянистого стебля, убитые нагреванием, замораживанием или действием ядовитых веществ. Через некоторое время, однако, такие убитые участки стеблей пере- [c.147]



Смотреть страницы где упоминается термин Ксилемный транспорт: [c.291]    [c.293]    [c.103]    [c.136]    [c.235]    [c.141]    [c.148]    [c.258]    [c.293]   
Смотреть главы в:

Физиология растений -> Ксилемный транспорт




ПОИСК







© 2025 chem21.info Реклама на сайте