Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

транспорт внутрь органелл

    Большинство белков проникает в митохондрии и хлоропласты из цитозоля сходным образом. Этот механизм был наиболее хорошо изучен для митохондрий, особенно у дрожжей. Белок переносится в матрикс митохондрии через зоны слипания внешней и внутренней мембран. Для этого переноса требуется гидролиз АТР, а также электрохимический градиент на внутренней мембране. Транспортируемый белок разворачивается, когда пересекает мито хондриальные мембраны. В митохондрии или хлоропласты переносятся только те белки, которые содержат специфический сигнальный пептид. Этот сигнальный пептид обычно расположен на N-конце молекулы белка и отрезается после переноса ее внутрь органеллы. На втором этапе транспорта белок может переноситься во внутреннюю мембрану. Для этого он должен иметь еш,е гидрофобный сигнальный пептид этот пептид открывается после удаления первого сигнала. В случае хлоропластов для переноса белков из стромы в тилакоид также требуется второй сигнальный пептид. [c.34]


    Мне хочется специально подчеркнуть последнее обстоятельство, так как обычно полагают, что связь между кинетическими и термодинамическими характеристиками химических и биохимических систем отсутствует. Здесь мы можем даже вывести количественную связь между затратами свободной энергии при активном транспорте и скоростью превращения вещества внутри органеллы. [c.83]

    Полагают, что энергетические органеллы эукариот ведут свое происхождение от прокариотических клеток, которые были захвачены примитивными эукариотами путем эндоцитоза на ранних этапах эволюции и вступили с ними в симбиоз. Это позволяет объяснить, почему митохондрии и хлоропласты содержат свою собственную ДНК. Но за миллиард лет, прошедших с момента возникновения первых эукариотических клеток, эти органеллы утратили большую часть своего генома и стали тем самым зависимы от белков, которые кодируются ядерным геномом, синтезируются в цитоплазме и только потом переходят внутрь органелл. В то же время и клетка- хозяин зависит теперь от этих органелл-они дают ей молекулы АТР, которые нужны для осуществления биосинтетических реакций, для транспорта ионов и растворенных веществ и для других непрерывно идущих процессов жизнедеятельности [c.8]

    Чем больше энергии электрохимического градиента затрачивается на перенос молекул и ионов внутрь митохондрии, тем меньше остается для синтеза АТР. Например, если к дышащим митохондриям добавить значительное количество Са , органеллы полностью прекратят синтез АТР и вся энергия градиента будет расходоваться на транспорт ионов кальция. Очевидно, что должны существовать какие-то механизмы, направляющие энергию протонного градиента именно на те процессы, которые наиболее важны для клетки в данный момент. [c.21]

    Существенными недостатками современных кальциевых электродов являются достаточно медленная скорость их ответа на изменения концентрации Са + и относительно невысокая катионная селективность. В настоящее время исследователи практически отказались от попыток измерений концентрации Са + внутри клеток с помощью микроэлектродов. Во-первых, электрод отвечает на изменения концентрации катиона в области, непосредственно примыкающей к его кончику. Во-вторых, трудно исключить, что при внедрении электрода в клетку нарушается целостность клеточной мембраны и из-за наличия большого трансмембранного кальциевого градиента уровень Са + в клетке увеличивается. Тем не менее, при работе с изолированными клеточными органеллами кальциевые электроды имеют несомненное преимущество (особенно, когда скорость транспорта Са + невелика) перед другими методами, включая регистрацию поглощения изотопа кальция ( Са +) после осаждения фрагментов мембран на мембранных фильтрах или использование металлохромных индикаторов. [c.29]


    Субстрат должен транспортироваться внутри биокаталитического слоя таким образом, чтобы вступать в контакт с ферментом в клетках ткани. Понятно, что прежде чем вступить в контакт с ферментом, субстрат должен проникнуть внутрь иммобилизованной клетки. Кроме того, необходимо учитывать транспорт из клеток вещества, непосредственно определяемого электродом. Дело осложняется еще и тем, что основной фермент может локализоваться в специфических внутриклеточных органеллах, а это предполагает наличие дополнительных механизмов переноса субстрата в органеллы и внутри них и вывода продуктов. Экспериментальные [10] и теоретические [13] [c.53]

    Регуляция скорости поступления метаболитов в клетку. Лишь немногие вещества, подобно воде, свободно проникают мембраны посредством простой диффузии. На перенос веществ через мембрану влияют процессы двух типов. Концентрация многих растворимых метаболитов с низкой молекулярной массой выше в клетках, чем во внеклеточной крови или лимфе. Поэтому поступление таких метаболитов в клетки требует их переноса против концентрационного градиента. Активный транспорт, стало быть, представляет собой процесс с положительной ДС, для протекания которого требуется энергия в виде АТР. В других случаях перемещаемый материал движется внутрь по концентрационному градиенту, т. е. ДС отрицательна. Однако возможность такого пассивного транспорта обычно обусловлена специфическими механизмами мембраны (см. ниже). Эти транспортные системы не только обеспечивают постоянство внутриклеточного состава, но и принимают участие в процессах транспорта веществ через мембраны внутриклеточных органелл, например митохондрий (гл. 12). Ниже обсуждаются специфические аспекты транспортных процессов. [c.362]

    Оболочка хлоропласта представляет собой непрерывную двойную мембрану, которая функционирует как селективный барьер при транспорте метаболитов внутрь органеллы или из нее. Полагают, что внутренняя мембрана может играть некоторую роль в формировании новых внутренних ламелл. У некоторых видов растений к внутренней мембране оболочки хлоропласта прилегает протяженная система трубочек и пузырьков. Эта система, известная как периферический ретикулум, по-видимому, характерна для растений, обладающих С4-путем фиксации углерода (разд. 10.6), но иногда она обнаруживается и у некоторых Сз-растений, в частности в стрессовых условиях окружающей среды. Оболочка хлоропластов хлорофилла не содержит, однако в ней присутствуют каротиноиды, а именно зеаксантин (10.1), антераксантин (10.2) и виолаксантии (10.3), которые с помощью ферментов могут превращаться друг в друга. В последнее время появляется все больше данных, свиде- [c.329]

    Третья важнейшая функция белков — структурная. Клетка не может быть уподоблена сосуду, в котором попросту перемешаны в растворе все метаболиты п ферменты, — она разделена на множество органелл, защищенных белковьши, часто лппопротеиновьши, мембранами, наделенными ферментативной активностью, препятствующими свободному проникновению растворенных веществ. Внешняя оболочка клетки также является липопротеидной мембраной с весьма селективной проницаемостью. Большинство ферментов в клетке находится внутри тех или иных органелл. Поэтому и все биохимические процессы локализованы в определенных местах. Продолговатые, довольно крупные тела (длиной около 0,5 х) — митохондрии содержат в себе ферменты окисления и окислительного фосфорилирования, т. е. катализаторы реакций, в которых запасается энергия, потребляемая клеткой. Маленькие круглые образования (диаметром 150— 200 х ) — микросомы пли рибосомы содержат в себе ферменты, необходимые для синтеза белков. В ннх главным образом локализованы процессы синтеза белка. Задача, выполняемая структурными белками клетки, с одной стороны, чисто архитектурная белки служат материалом, из кото рого строится то или иное морфологическое образование. С другой стороны, они регулируют прохождение различных веществ внутрь органелл, т. е. осуществляют так называемый активный транспорт различных веществ, идущий часто против градиента концентрации, т. е. в сторону, противополон ную диффузии. В высших организмах, в которых произошла дифференциация и специализация тканей, некоторые структурные белки присутствуют в значительных количествах, образуя специальные типы тканей. Таков, например, коллаген, фибриноген крови, склеропротеин роговицы глаза и т. п. Изучение своеобразного молекулярного строения этих белков показывает его тесную связь с выполняемой ими функцией. В этом случае мы также имеем основание говорить о функциональной активности, разыгрывающейся на молекулярном уровне. [c.5]

    Центральную роль в компартментации эукариотической клетки играют белки. Они катализируют реакции, протекающие в каждой органелле, и избирательно переносят малые молекулы внутрь органеллы и из нее Белки также служат специфичными для органелл поверхностными маркерами, которые направляют новые партии белков и JIипидoв к соответствующим компартментам. Клетка млекопитающих содержит около 10 миллиардов (10 ) молекул белков примерно 10000 разных типов, синтез почти всех этих белков начинается в цитозоле - общем пространстве, окружающем все органеллы. Каждый вновь синтезированный белок затем специфически доставляется в тот клеточный компартмент, который в нем нуждается. Прослеживая путь белка из одного компартмента в другой, можно разобраться в запутанном лабиринте клеточных мембран. Следовательно, нам надлежит сделать центральной темой этой главы внутриклеточные перемещения белков. Хотя здесь будут описываться и обсуждаться почти все клеточные органеллы, основное внимание будет обращено на эндоплазматический ретикулум (ЭР) и аппарат Г ольджи, которые играют решающую роль в фиксации, сортировке и транспорте множества вновь синтезированных белков. [c.5]


    Пероксисомы специализируются на проееОении окислительных реакций с использованием молекулярного кислороОа. Они вырабатывают перекись водорода (которая им нужна для окисления), разрушая ее избыток с помощью каталазы. Считают, что, подобно митохондриям и хлоропластам. пероксисомы являются самовоспроизводящимися органеллами Однако они не содержат ДНК или рибосом. Полагают, что в их состав входит уникальный мембранный рецептор, позволяющий вносить внутрь органеллы все белки (включая и сам рецептор) путем избирательного транспорта из цитозоля. [c.38]

    Участие посторонних белков в сборке, как оказалось, не соответствует традиционному представлению о наличии прямой аналогии между механизмами свертывания полипептидных цепей в искусственных условиях и клетке. Ставшие известными функции молекулярных шаперонов потребовали определенной коррекции давно сформулированного и многократно подтвержденного в опытах in vitro принципа не нуждающейся в каких-либо посредниках самосборки белка. Выяснилось, что это не совсем так. Более того, оказалось, что в сложных клеточных условиях нужны белки, ассистирующие не только котрансляционное и посттрансляционное свертывание полипептидных цепей, но и помогающие транспорту белковых молекул через мембраны, реорганизации, диссоциации и ассоциации белков в олигомерные комплексы, сборке олигомеров внутри органелл и ликвидации белковых повреждений, вызванных стрессовыми и иными внешними воздействиями. [c.420]

    При исследовании внутриклеточного транспорта липидов, так же как и при изучении трансмембранного переноса, используются фосфолипиды, несущие радиоактивную или флуоресцентную метку. Внутри клетки липиды транспортируются двумя независимыми способами в виде везикул или отдельных молекул в комплексе с белками-переносчиками. Как уже отмечалось, биогенез мембран требует переноса липидов от мембран эндоплазматического рети- <улума и аппарата Гольджи к митохондриям, лизосомам, другим мембранным структурам и цитоплазматической мембране. По-видимому, возможен и обратный перенос липидов от органелл к микросомам. [c.174]

    Ясно, что эффективным способом ускорения промежуточных превращений может служить увеличение концентрации превращаемых веществ внутри органеллы посредством активного транспорта, т. е. противоградиентной накачки веществ при сопряженной трате энергии, например, выделяющейся при гидролизе АТФ. [c.82]

    Мы почти ничего не знаем о том, каким образом генетические системы ядра и органелл координируют свою активность при построении митохондрий и хлоропластов. Ясно, однако, что преобладает контроль со стороны ядерного генома. На это указывает тот факт, что у мутантов, у которых блокирован белковый синтез в органеллах, все же образуется нормальное количество проорганелл и в них продолжается синтез всей ДНК и части РНК органеллы, из чего можно заключить, что эти процессы, так же как и транспорт участвующих в них ферментов, находятся всецело под контролем ядерного генома. Кроме того, ядро, вероятно, регулирует количество белков, образующихся на рибосомах внутри органеллы. Относительно некоторых белков хлоропласта есть данные, что такая регуляция осуществляется на уровне тран-скригщии, но ее механизм неизвестен. [c.66]

    При дыхании митохондрий происходит электрогенный выброс в цитоплазму ионов водорода и генерация градиента pH и электрического потенциала на внутренней митохондриальной мембране (знак — внутри). Образующийся так называемый электрохимический потенциал ионов водорода (А дН в соответствии с определением П. Митчела) является движущей силой транспорта катионов и слабых кислот внутрь органелл. На каждые два перенесенных по дыхательной цепи электрона внутрь митохондрии транспортируется два иона кальция. Данные о кинетических параметрах системы транспорта Са + противоречивы. Однако можно сделать вывод, что величины кажущихся Кй и Утах при транспорте составляют соответственно более 10 мкМ и 500 нмоль/мг митохондриального белка в 1 мин. [c.45]

    В клетках животных большинство гормонов и медиаторов заключено в специальные везикулы, для которых характерно наличие клат-риновой оболочки. Эти везикулы путем эндо- и экзоцитоза осуществляют внутриклеточный транспорт между органеллами и мембранное рециклирование. Преодолевая мембрану, гормон, медиатор или другой лиганд индуцирует образование везикул. Затем последние опючко-вываются от мембраны, перемещаются и трансформируются внутри клетки. После слияния с мембраной, к которой везикулы транспортируются, содержимое выходит из пузырька и везикула освобождается от клатрина. В этом процессе участвует АТФаза. [c.107]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Как уже говорилось выше, ио данным электронной микроскопии, внутренняя область клетки отделена от внешней среды с помощью поверхностного слоя цитоплазмы, имеющего характер мембраны (50—70А толщиной), и все заполняющие клетку органеллы — ядро, митохондрии, рибосомы и др. — отделены друг от друга и от заполняющей клетку эндоплазмы. В некоторых случаях органеллы имеют специальные мембраны (например, ядро в клетках высших организмов), в других случаях разделительной перегородкой является само вещество частицы (например, у митохондрий и рибосом). Структурные элементы клетки содержат значительный процент белков и чаще всего липиды, т. е. группу водонераствори.мых жирорастворимых веществ. Смысл подобной структуры клеток — в пространственном разделении химических реакций в клетке. Сквозь все мембраны, как внешние, так и внутреннпе, непрерывно идут процессы переноса. Процессы переноса в клетке бывают двоякие. Биологически важным является активный транспорт, т. е. перенос ионов и молекул разных веществ против градиента концентращга пз области, где концентрация низка, туда, где концентрация выше. Этот процесс лежит в основе питания и секреторной функции клетки, т. е. поглощения ею из внешней среды необходимых веществ и выделения в среду веществ, используемых другими клетками и тканями. Этот же процесс внутри клетки направляет одни вещества в ядро, дрз гие в митохондрии, третьи в рибосомы и т. д. [c.176]

    Механизм движения везикул в клетке, очевидно, не диффузионный. Как мы увидим в дальнейшем, внутри живой клетки, как и в отдельных ее органеллах, нет места для диффузионной диссипации энергии. Все движения в клетке управляются межмолекулярными взаимодействиями и локальными электрическими полями. Так организован и транс-цитоз — транспорт молекул через клетку. Этот процесс характерен для поляризованных клеток, таких как эпителиальные клетки кишечника, которые имеют базальную и апикальную поверхности (каждая со своим определенным фосфолипидным составом), создающие электрическое попе в клетке и определяющие направление транспорта везикул. Примером может служить адсорбция антител, содержащихся в молоке матери, клетками кишечника новорожденного. Эти антитела поглощаются апикальной поверхностью эндотелиальных клеток, переносятся внутри клетки к базальной поверхности и затем вьщеляются с базальной поверхности в кровь. Аналогично организован механизм секреции тирео-идного гормона. Сначала тиреоглобулин выделяется в просвет фолликула щитовидной железы, затем происходит эндоцитоз тиреоглобулина эпителиальными клетками, в составе везикул он транспортируется через клетку, одновременно подвергаясь частичному протеолизу, и образованный в везикулах низкомолекулярный гормон тироксин секретируется в ближайший кровеносный капилляр. [c.120]

    Нуклеопротеиновый комплекс, достигший целевой ткани, может быть включен в митохондриальные структуры или в клеточное ядро в зависимости от селективности связывания с мембранами этих органелл. Было продемонстрировано in vitro проникновение белков, ответственных за контроль клеточного цикла, через ядерную оболочку внутрь ядра (Protein targeting, 1993). Аналогичный механизм возможен для межтканевого и внутриклеточного транспорта НПК. [c.184]

    Означают ли приведенные данные, что митохондриальная система транспорта Са + создана Природой понапрасну По всей видимости, нет. Кривая активации системы транспорта кальцием имеет сигмоидальную форму при увеличении концентрации Са + в микромолярном диапазоне. При переходе концентрации Са + от 1 до 5 мкмоль/л скорость поглощения этого катиона возрастает в десятки раз. Поэтому предполагают, что система митохондриального кальциевого транспорта включается тогда, когда происходит перегрузка клеток кальцием, например, в результате ишемии миокарда и последующей его реперфузии (см. гл. 7). В таком случае внутри митохондрий накапливаются значительные количества этого катиона, вследствие чего ингибируется АТФ/АДФ-обмен, уменьшается концентрация адениновых нуклеотидов, возникает конкурен-пия Са + с Mg + за АТФ (истинным субстратом АТФ-синтета-зы является MgATФ). В матриксе митохондрий происходит выпадение кристаллов фосфата кальция, и при далеко зашедшем процессе эти органеллы разрушаются. Таким образом, вместо выполнения своей основной функции — производства энергии — митохондрии, выключаясь из метаболизма, спасают клетку от гибели. [c.46]

    Эти исследования еще раз подчеркивают, сколь важное значение имеет целостность структуры для того, чтобы понять, как в действительности работают субклеточные органеллы, например хлоропласты. Теперь ясен путь для изучения большего числа реакций синтеза различных продуктов, например крахмала и сахарозы, в изолированных хлоропластах. Транспорт неорганического фосфата и сахарофосфатов внутрь хлоропласта и из него строго регулируется в зависимости от потребностей метаболизма. В целом можно цказать, что световые реакции фотосинтеза происходят в ламеллах гран, или мембранах, тогда как темновые реакции осуществляются в строме, или растворимой части хлоропласта. [c.93]

    Вспомним, что ПП клетки определяется разностью концентраций ионов в наружной среде и внутри клетки, а ПП любой органеллы - разностью концентраций между цитоплазмой и внутренним содержимым органеллы. В величину ПП могут вносить вклад и электрогенные системы транспорта, а также поверхностный потенциал, обусловленный заряженными группал1и на мембране. Величина мембранного потенциала растительных клеток имеет в большинстве случаев величины от -100 до [c.112]

    Как уже отмечалось, под влиянием экзогенного ацетилхолина наблюдается выход в среду ионов Ка и из интактных хлоропластов. Внутри хлоропластов гороха концентрация этих ионов вьш1е, чем в цитоплазме, но оболочка пластиды непроницаема для них. Открывание ионных каналов под действием ацетилхолина, по-видимому, способствует пассивному транспорту ряда ионов по градиенту электрохимического потенциала. Однако протон в этом случае по-разному поступает в отдельные компартменты органелл. [c.113]

    Современные представления об электронном транспорте в таких органеллах, как митохондрии и хлоропласты, включают понятие носителей. Некоторые из них статично зафиксированы в мембране, другие более свободно связаны с мембранной поверхностью, третьи свободно перемещаются внутри мембранного матрикса. Соблазнительно предположить, что витамин С не только выступает в качестве искусственного донора электронов для восстановления цитохрома с в экспериментах in vitro, но и осуществляет еще од- [c.108]


Смотреть страницы где упоминается термин транспорт внутрь органелл: [c.12]    [c.413]    [c.309]    [c.217]    [c.351]    [c.413]   
Молекулярная биология клетки Том5 (1987) -- [ c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Органеллы



© 2025 chem21.info Реклама на сайте