Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водная фаза

    Низкотемпературная сероводородная коррозия. Ранее уже отмечалось, что на установках гидроочистки влага поступает с сырьем и циркуляционным газом, а также образуется в цикле гидрирования. В условиях изменения агрегатного состояния потоков, содержащих сероводород, и образования водной фазы на металлической стенке возникает низкотемпературная сероводородная коррозии. [c.147]


    На сероводородное растрескивание оказывают влияние такие параметры среды, как наличие водной фазы, ее pH, содержание сероводорода, присутствие хлоридов. Сероводородное растрескивание стали при низких температурах происходит только под действием водных растворов сероводорода. Ни сухой сероводород, ни насыщенные сероводородом нефтепродукты (бензин, керосин, дизельное топливо) не вызывают растрескивания сталей. В сероводородных средах при температуре выше точки кипения водной фазы также не наблюдалось случаев растрескивания металла. [c.148]

    Для выполнения норм охраны окружающей среды водная фаза, стоки и газовые выбросы должны быть очищены от вредных веществ до предельно допустимых концентраций (ПДК). Для управления процессами переработки и связи с системами жизненного цикла товарных продуктов создаются блоки сбора и обработки информации и управления. [c.18]

    Обезвоживание пропана. Для обезвоживания жидкого пропана применяется одна из разновидностей азеотропной перегонки. В процессе получения и при последующем хранении жидкий пропан поглощает небольшое количество воды в растворенном виде. При полном насыщении и при температуре 27° в пропане содержится 0,092% мол. воды. Активность воды, растворенной в пропане, очень высока, однако эту воду можно отогнать в виде азеотропной смеси [12]. Схема этого процесса изображена на рис. 24. Влажный пропан непрерывно поступает в колонну для обезвоживания. Сухой пропан (температура кипения при атмосферном давлении —42°) получается в виде остатков, а отогнанный продукт представляет собой азеотропную смесь воды и пропана. После конденсации отогнанный продукт расслаивается на две фазы. Верхняя — углеводородная — фаза возвращается в колонну, а нижняя — водная — фаза сливается. Данные по равновесию системы жидкость — пар для пропана, насыщенного водой, приведены в табл. 26. При низких давлениях константа равновесия для испарения воды из раствора в пропане значительно превышает единицу. Это означает, что в данных условиях вода является более летучим компонентом. [c.129]

    Выходящие из разделителя пары после охлаждения и конденсации разделяются на две фазы. Водная фаза частью используется для освобождения рафината от [c.107]

    Степень экстракции зависит от выбора растворителя для экстрагируемого вещества и от его состояния в водной фазе. Некоторые вещества можно полностью извлечь из водной фазы однократным экстрагированием. Если же вещество экстрагируется не полностью, то прибегают к двукратной экстракции. Для этого экстракт после первого экстрагирования отделяют с помощью делительной воронки, а водную фазу обрабатывают новой порцией органического растворителя при необходимости процесс повторяют (многократная экстракция). [c.129]


    При описании фильтрации газированной жидкости М. Маскет использовал понятие объемного коэффициента р жидкости, определяемого для нефтяной и водной фазы соответственно из отношений [c.290]

    Технологическая схема промышленного метода получения эпихлоргидрина из аллилхлорида изображена на рис. 46. Для получе-нпя дихлоргидрина аллихлорид вводят в реакцию обмена с хлорноватистой кислотой в водной фазе. Поскольку аллилхлорид плохо растворяется в воде (при 20 °С в воде растворяется только 0,36 вес. % аллилхлорида), необходимо принимать особые меры, чтобы воспрепятствовать прямому контакту хлора и аллилхлорида. В противном случае в результате присоединения хлора образуется слишком большое количество трихлорпропана. [c.186]

    Реакция бромистого этила с водой при 25° не протекает в сколько-нибудь заметной степени даже при энергичном встряхивании в течение нескольких дней. Проба на Вг дает отрицательный результат, что указывает на отсутствие следов Вг в водной фазе, и исходные вещества могут быть выделены в неизменном виде. [c.471]

    Предполагается, что по мелким порам движутся смачивающая фаза и жидкость промежуточной смачиваемости (т. е. вода и нефть), а по более крупным порам-жидкость промежуточной смачиваемости (нефть) и несмачивающая фаза (газ). Отсюда следует, что фазовые проницаемости для воды И газа зависят только от их насыщенностей, т. е. являются функциями одной переменной, соответственно л, и По этим же причинам капиллярные давления на контактах вода-нефть и нефть-газ также можно считать функциями только одной насыщенности-соответственно водной ( 1) и газовой ( 2) фазами. Физически это означает неподвижность менисков водной фазы, граничащей с нефтью, при замене части нефти газом и неподвижность менисков газовой фазы, граничащей с нефтью, при замене части нефти водой. Очевидно, эти допущения являются лищь приближенными. [c.289]

    При депарафинизации водными растворами карбамида, кроме фильтрации, применяют различные варианты отделения комплекса отстаиванием. Однако при отстое возникают свои трудности в основном из-за того, что поверхность комплекса, будучи гидро--фобной, предпочтительно смачивается неводными жидкостями. Поэтому при отстое продуктов комплексообразования комплекс оказывается в значительной своей массе не в водной фазе, а в среде раствора депарафинированного продукта, от которого отстаивается с трудом и не нолностью. Часть же комплекса, перешедшая в водную фазу, удерживает на поверхности значительные количества раствора депарафинированного продукта. Для удаления из ком- [c.148]

    При депарафинизации в водном растворе карбамида комплекс разлагают также в присутствии воды. Для этого комплекс смешивают с оставшимся после комплексообразования водным раствором карбамида и нагревают до температуры разложения. При этом высвобождающийся карбамид растворяется в водной фазе, а застывающий компонент отделяется от водного раствора непосредственным отстоем или экстрагированием легким углеводородным растворителем. [c.150]

    Иногда изменяется знак углового коэффициента соединяющих линий (рис. 8) [Hi]. В такой системе полностью растворимый компонент, например н-пропанол, сначала переходит преимущественно в водную фазу, но при дальнейшем увеличении его содержания в системе он переходит главным образом в циклогексановый слой. Коэффициент распределения м-пропа- [c.170]

    II после отделения водной фазы проходят три ректификационные колонны, в которых от спиртов отделяются амилены, амилхлориды и вода. Амилхлориды возвращаются на гидролиз. [c.88]

    Кислородсодержащие продукты синтеза. Примерно 18% на углерод и 6% на кислород, содержащиеся в исходной СО, конвертируются нри синтезе в кислородсодержащие соединения [378]. Последние могут быть условно разделены на 2 группы водорастворимые (низкомолекулярные) и водонерастворимые (высокомолекулярные). Некоторая часть продукта обладает ограниченной растворимостью в воде. Типичный состав водной фазы (реакционной воды) приведен в табл. Х1П-8 [387]. [c.595]

    Типичный состав водной фазы (реакционной воды) синтеза [387] [c.596]

    При применении персульфата калия и 1% эмульгатора начальный участок кривой удовлетворяет уравнению v — где [I] — концентрация инициатора (% от массы водной фазы). В интервале 0,6—3,0% персульфата калия скорость полимеризации не изменяется, а молекулярная масса полистирола понижается. [c.151]

    Промышленные процессы. В промышленности реакцию осуществляют барботированием воздуха через изопропилбензол при 5—10 ат и 100—130 °С. Контактирование фаз проводят в реакционных колоннах или в автоклавах, снабженных мешалками, в присутствии эмульгаторов (обычно анионного типа), способствующих образованию устойчивых эмульсий. Для обеспечения стабильности образующейся гидроперекиси pH реакционной среды должен быть 8,5— 10,5, а соотношение водной фазы и изопропилбензола 3 1. [c.179]

    В случае водных растворов жирных кислот СНз (СН2) —СООН между полярными карбоксильными группами и молекулами воды (тоже полярными) существует сильное взаимодействие, которое определяет ориентацию этих групп внутрь водной фазы. [c.333]


    По теории Медведева существует три типа зависимости скорости полимеризации от концентрации эмульгатора. При использовании маслорастворимых инициаторов полимеризации скорость пропорциональна концентрации эмульгатора в водной фазе в первой степени  [c.150]

    Второй случай характеризуется зависимостью скорости полимеризации от концентрации эмульгатора в степени /г, в особенности при образовании свободных радикалов инициатора в водной фазе  [c.150]

    Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды, как парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, то есть гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. В промысловой практике чаще все1о образуется гидрофобная эмульсия, так как эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть—вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводородах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт реакции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии. При на ичии эмульгаторов обоих тигюв возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. [c.147]

    Зависимость скорости полимеризации от концентрации эмульгатора при применении 0,1% персульфата калия описывается также уравнением и = й[5] / , где [5] — концентрация эмульгатора (% от массы водной фазы). С увеличением количества эмульгатора увеличивается скорость полимеризации и молекулярная масса полистирола. [c.151]

    Смесь бутадиена со стиролом или а-метилстиролом предварительно эмульгируют в водной фазе в смесителе или в трубопроводе и охлаждают примерно до 15 °С. Соотношение углеводородной и водной фаз регулируется автоматически. Эмульсия мономеров подается насосом в первый аппарат батареи, в который последовательно поступают растворы инициатора, активатора и регулятора. По мере заполнения первого аппарата батареи содержимое переходит во второй аппарат по перетоку, затем в третий и т. д. [c.253]

    Благоприятными для скорости полимеризации являются применение мономеров с высокой концентрацией, увеличение количества эмульгатора и молекулярной массы жирной кислоты (до определенного значения), применение активной гидроперекиси, низкое содержание минеральных солей в водной фазе, отсутствие кислорода в системе и др. [c.254]

    Следует иметь в виду, что образующийся латекс должен обладать высокой агрегативной устойчивостью к механическим и термическим воздействиям в процессе сополимеризации и при отгонке мономеров. Устойчивость латекса регулируется многими параметрами, оказывающими влияние на размер латексных частиц и степень насыщенности их поверхности количеством эмульгатора и минеральных солей в растворе, pH водной фазы, конверсией мономеров и пр. [c.254]

    Разделение экстракцией более удобно, чем методом осаждения, так как при этом отпадает необходимость отделения осадков. Кроме того, при экстракции очень мала поверхность раздела между несмешнвающимися жидкостями и не проис ходит кристаллизация, а следовательно, нет и соосаждения, которое весьма затрудняет разделение. Достоинством метода является также быстрота и то, что стряхивание исследуемого раствора с подходящим растворителем дает возможность извлекать вещество из большого объема водной фазы в малый — органического растворителя, т. е. концентрировать его. [c.129]

    Как и в случае этиленхлоргидрина, для подавления побочных реакций желательно работать при температуре ниже 50—60 °С. При этих условиях этилендихдорид можно в значительной степени вывести из верха колонны газовым потоком и предотвратить образование второй фазы в реакторе. При реакции превращения пропилена более тяжелый дихлорид не позволяет работать с чистым пропиленом, что было бы выгодно. Тем не менее, дихлорид можно отогнать во время реакции обмена прп 50—60 °С, использовав поток углеводорода, содержащий более 45% пропилена. Не вступивший в реакцию газ содержит инертные газы метан, этан, пропан плп азот. При начальном контакте с пропиленовым потоком водная фаза должна содержать не более 0,5 г/л хлора [12]. [c.72]

    На рис. 73 представлены возможные в этом случае схемы. Наиболее целесообразной, на первый взгляд, кажется схема с процессом Ректизол . Продукция месторождения со скважин поступает в блок разделения фаз, где разделяется на газ, газовый конденсат и водную фазу. Далее газ поступает в установку низкотемпературной сепарации (конденсации) с искусственным. солодом, где охлаждается до температуры, обеспечивающей 100%-ное извлечеиие С5+. В качестве ингибитора гидратообразования используется метанол, который можно после отработки регенерировать совместно с насыщенным метанолом сероочистки. ле установки НТС газ, освобожденный от воды, газового та и частично сернистых компонентов, при той же тем- ч давлении поступает в установку сероочистки. В про-"изол газ освобождается от всех кислых компонеп- пики и остатков воды и поступает иа дальнейшее % 1я выделения гелия. В энергетическом отношении [c.230]

    Кучер и другие [265] нашли, что скорость окисления повышается с увеличепиел pH и количества воды. Эмульгатор в водной фазе повышает растворимость кислорода, кумола и КМГП. Реакция окисления инициируется в этой же фазе [265, 266]  [c.278]

    В системе з.тектролпт — углеводород в присутствии сероводорода развитие коррозии тесно связано с явлениями избирательного смачивания поверхности стали в условиях ее контакта с двумя несмешивающимися жидкостями. В результате контакта металла со средой по мере образования гидрофильного сульг-фида железа происходит продвижение избирательного смачивания. На поверхности металла постепенно образуются пленка электролита и рыхлый нарост продуктов коррозии. В этот нарост под действием капиллярных сил втягивается электролит из водной фазы, что вызывает рост скорости коррозии. С повышением концентрации сероводорода в водной фазе скорость коррозии углеродистой стали постепенно возрастает, причем максимальные значения скорости соответствуют высоким яначениям концентрации сероводорода. Следует учитывать и общее содержание сероводорода и системе, так как его растворимость [c.147]

    Выше граничной линии АСЕ, на которой е = 1, располагается область I перегретых водяных и углеводородных наров, а между прямой F и участком СЕ линии росы водяного пара располагается область III, внутри которой фигуративные точки отвечают двухфазным системам с жидкой водной фазой и паровой фазой, представляющей смесь перегретых углеводородных и насыщенных водяных паров. [c.120]

    Уравнения (10.11), (10.12) образуют гиперболическую систему квазилинейных уравнений. Уравнение (10.11) является уравнением баланса массы водной фазы, уравнение (10.12)-уравнением баланса массы активной примеси. Эти уравнения допускают разрывные решения в распределениях насышености s ( , т) и концентраций с ( , т) возможны скачки. На скачках должны выполняться условия баланса массы водной фазы и баланса массы примеси, которые выводятся аналогично случаю модели Бакли-Леверетта (см. гл. 9, 25, п. 5.5). [c.306]

    В промышленной практике карбамидной депарафинизации отделение комплекса путем вакуумной фильтрации оказалось связанным с рядом осложнений, вызываемых в ряде случаев плохой фильтруемостью комплексов. Особенно трудно протекает вакуумная фильтрация в процессах с водной фазой. В связи с этим были предложены другие способы осуш ествления этой операции. Так, при депарафинизации дизельного топлива твердым карбамидом для отделения комплекса М. Г. Митрофанов, Н. И. Бондаренко, В. Е. Гаврун и Ф. А. Березка применили саморазгружаюш иеся фильтрующие центрифуги [50, 51]. [c.148]

    Для водорастворимых ПАВ свободная энергия взаимодействия активных групп с водой более высокая, чем свободная энергия испарения. Исключение представляют лишь группы =СН, —СбНб, —С1 и некоторые другие. В отличие от маслорастворимых ПАВ соединения, растворяющиеся в воде, ориентируются таким образом, чтобы их активные группы были направлены в водную фазу. [c.202]

    Пример 6.1. Бензойная кислота при экстракции из бензольной капли вступает в химическую реакцию с растворенным в водной фазе гидрооксидом натрия. Диаметр капли диффузии бензойной кислоты в воде О, =1,02 10 м /с, коэффициент даффузии N3011 в воде >5 = 1 4- 10 м /с, начальная концентрация бензойной кислоты в бензоле с,, = 0,5 мол1 л, а концентрация щелочи в воде с,, =0,75 моль/л. Коэффициент распределения бензойной кислоты между бензолом и водой ф=с 1с =40. Рассчитать скорость массопереноса и определить, во сколько раз изменится ее величина при увеличении концентрации NaOH в исходном растворе до 3 моль/л. [c.276]

    Последние годы применяется видоизмененная форма перегонки с водяным паром. Жидкая водная фаза отсутствует, но для уменьшения упругости пара перегоняемого вещества непрерывно вводится водяной пар. Это вызывает снижение температуры перогонки, т. е. температуры, необходимой для испарения желаемого компонента. Действительно, при температуре перегонки, превышающей 1[окоторый максимум, находящийся в интервале 350—450°, углеводороды начинают распадаться. При использовании водяного пара или комбинации водяного пара с вакуумом можно перегонять высококипящие углеводородные фракции без их разложения. [c.119]

    Пример 1У-4. Нитрование бензола смесью водных растворов азотной и серной кислот проводилось в пятиступенчатом реакторе мeшeния . Рабочие условия указаны на рис. 1У-8. В реакторе при помощи водяной рубашки поддерживается температура 30 °С. Объем системы в процессе реакции остается по существу постоянным. В соответствии с приведенными расходами реагентов количество кислотной фазы составляло 31,414 кмольЫ смеси, а количество органической фазы—2,5151 кмоль1м смеси. Объем каждой ступени равен 0,103-10 м . Для данной концентрации серной кислоты скорость реакции определяется концентрацией азотной кислоты в кислотной (водной) фазе и концентрацией бензола в органической фазе. На рис. 1У-9 представлены результаты периодических опытов при концентрации серной кислоты [c.127]

    По способу фирмы General Ele tri no окончании реакции раствор полимера промывают разбавленной соляной кислотой для превращения избытка пиридина в гидрохлорид и далее отделяют водную фазу, содержащую гидрохлорид пиридина. Поликарбонат выделяют из органической фазы в виде белого порошка при добавлении осади-теля (например, алифатических углеводородов), путем испарения растворителя или другими известными методами. [c.42]

    Фенолы и карбоновые кислоты можно разделить при помощи селективной нейтрализации, так как фенолы являются очень слабыми кислотами. Один из методов состоит в том, что щелочная вытяжка подкисляется, карбоновые кислоты и фенолы переходят в свободное состояние (и отделяются от раствора). Затем смесь кислот и фенолов подвергают воздействию карбоната натрия. Карбоновые кислоты переходят в раствор, фенолы с примесью углеводородов остаются нерастворенпыми и могут быть отделены от карбоновых кислот. Фенолы повторно растворяют в разбавленной щелочи и отделяют от примеси углеводородов. Эффективным методом разделения фенолов и карбоновых кислот является также метод разделения в водной фазе с контролируемой концентрацией водородного иона [112]. [c.38]

    Растворенные газы (даже углеводороды) понижают поверхностное натяжение нефти [131 —132], но эффект менее значителен, и изменения, возможно, обусловлены наличием молекул растворенного газа. Этот факт имеет большое значение для промышленности, где вязкость и поверхностное натяжение жидкости могут влиять на количество нефти, извлеченной при определенных условиях. Большая часть того, что было сказано, относится к межфазному (граничному) натяжению [133—134]. В системе нефть — вода pH водной фазы окажет влияние на межфазное натяжение это изменение не велико для нефтепродуктов с высокой степенью очистки, но увеличение pH, наблюдающееся в случае плохо очищенных или слегка окисленных нефтей, вызовет быстрое уменьшение меж-фазного натяжения [134—135]. Изменение поверхностного натяжения на границе раздела нефть — щелочная вода было предложено как метод контроля для последующей очистки или окисления таких продуктов, как, например, турбинные и изоляторные масла [136—138]. В тех случаях, когда поверхностное или межфазное натяжение понижается присутствием растворенных веществ, которые имеют тенденцию образовывать поверхностную пленку, требуется некоторое время, чтобы получить конечную концентрацию и, следовательно, — конечное значение натяжения. В таких системах необходимо различать динамическое и статическое натяжения первое относится к неокисленной поверхности, имеющей [c.183]

    Медведев на основании большого экспериментального материала и имеющихся опубликованных данных о роли коллоидной растворимости мономеров в процессе полимеризации предложил его топографию в зависимости от природы изученных к тому времени мономеров [34, 35—37]. Под действием инициатора, растворимого только в мономере, независимо от растворимости последнего в воде, полимеризация начинается в мицеллах эмульгатора, содержащих и мономер и инициатор. То же относится и к мономерам, нерастворимым в воде (бутадиен, изопрен, стирол, винилхло-рид, винилиденхлорид и др.). При полимеризации мономеров, хорошо растворимых в воде (например, таких, как акрилонитрил), или частично растворимых в воде (метилакрилат, метилиетакря-лат и др.) процесс может начинаться в водной фазе в присутствии водорастворимых инициаторов процесса и частично, в зависимости от полярности мономера, в мицеллах эмульгатора. Для мономеров с высокой растворимостью в воде преобладающим является образование растущих полимерных цепей в водном растворе. [c.147]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Технологическая схема процесса сополимеризации бутадиена со стиролом /—емкость для бутадиена 2—емкость для стирола 3—аппарат для приготовления угле-водородной фазы 4—аппарат для приготовления водной фазы 5 —смеситель углеводородной и вояноА фаз 6-1,..., —полимеризаторы 7, Д—отгонные колонны 5—емкость для [c.253]


Смотреть страницы где упоминается термин Водная фаза: [c.129]    [c.483]    [c.223]    [c.188]    [c.152]    [c.149]    [c.150]   
Смотреть главы в:

Происхождение жизни Химические теории -> Водная фаза




ПОИСК







© 2025 chem21.info Реклама на сайте