Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растительные клетки, введение геном генов

    Однако, несмотря на принципиальную возможность применения такого подхода, привлечение методов генетической инженерии вряд ли позволит в ближайшее время перейти к задаче создания азотфиксирующих растений. Основные сложности состоят в следующем требуется разработка методов введения га/-генов в растительную клетку, их репликации и экспрессии там у высших растений отсутствуют системы, которые осуществляли бы энергообеспечение фермента азотфиксации — нитроге-назы (процесс азотфиксации связан с затратой большого количества клеточной энергии) растительная клетка не обладает соответствующими системами транспорта и запасания в высокой концентрации ионов железа и молибдена, необходимых для синтеза нитрогеназы наконец, она не имеет системы защиты нитро-геназы от инактивации кислородом. Последнее обстоятельство считают главным лимитирующим фактором в экспрессии га -ге-нов при введении их в аэробные организмы. [c.55]


    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]

    Для обеспечения экспрессии чужеродньгх генов, введенных в растительные клетки, использовали растительные промоторы. Различные промоторы, функционирующие только в определенньгх растительных тканях или на определенной стадии развития растения, идентифицировали по экспрессии репортерного гена без промотора после его интеграции в хромосомную ДНК растения. Были разработаны методы встраивания чужеродных генов непосредственно в хлоропластную или митохондриальную ДНК так, чтобы кодируемый белок синтезировался прямо в этих органеллах. И наконец, для того чтобы успокоить общественность, были разработаны методы удаления маркерных генов из трансгенных растений. [c.387]

    Другой вариант генно-инженерного конструирования системы азотфиксации относится непосредственно к растениям. Введение в геном растительной клетки Т1-плазмид агробакгерий так называемой ТДНК является хорошо отработанной процедурой (гл. 31). В ТДНК можно без труда вводить гены микробных клеток, в том числе и кодирующие белки азотфиксации. [c.398]

    В последние годы достигнуты большие успехи, связанные с генетической трансформацией клеток, в том числе и растительного происхождения. Схема трансформации включает в себя получение протопласта, введение в него необходимой генетической информации, формирование полноценной растительной клетки, клонирование и регенерацию. (Подробно техника генно-и1гженерных экспериментов будет описана в следующем разделе.) В данной схеме трансформированный протопласт — суспензионная культура — каллусная культура — целое растение (рис. 31.4) — наиболее тех- [c.498]


    Неэффективный способ доставки ДН К в растительные клетки Может использоваться для введения генов только в протопласты растительных клеток, из которых могут быть регенерированы жизнеспособные растения Имеют ограниченное применение, поскольку единовременно инъекцию можно сделать только в одну клетку манипуляции могут проводить только специалисты [c.380]

    При наличии методов введения в растительные клетки определенных генов, способных к функционированию и стабильному наследованию, открываются реальные возможности создания растений с заранее заданными полезными признаками. Векторы для введения генов в растительные клетки могут быть основаны на репликонах растительных вирусов, однако до настоящего времени попытки получения таких векторов, удовлетворяющих, в частности, требованию стабильного наследования, были не очень успешны. [c.442]

    Бинарный вектор. Другой, более простой и поэтому более часто применяемый метод введения чужеродной ДНК заключается в использовании бинарных векторов. Как уже упоминалось, для заражения и трансформации растительных клеток агробактериям необходима vir-o6-ласть, ответственная за перенос ДНК, и прямые повторы, ограничивающие район Т-ДНК. Более того, угУ-область и пограничные повторы Т-ДНК не обязательно должны находиться в одной плазмиде. Система бинарных векторов основана на том, что в агробактериальной клетке, используемой для трасформации растений, одновременно находятся две плазмиды. Одна содержит область пограничных повторов Т-ДНК, а другая — v/r-область. Обе плазмиды могут независимо реплицироваться в клетках агробактерии, однако, поодиночке не могут приводить к трансформации растений. При этом плазмида, несущая Т-ДНК, содержит в своем составе фрагменты плазмиды Е. соИ (в том числе и точку начала репликации), что позволяет проводить все манипуляции по клонированию в клетках Е. соИ и намного упрощает весь процесс. Аналогично коинтегра-тивному вектору нужный ген (целевой) и ген селективного маркера встраиваются в область Т-ДНК, и затем такая рекомбинантная плазмида вводится в клетки агробактерии, которые уже несут другую плазмиду с угг-областью. В отличие от коинтегративных векторов не происходит гомологичной рекомбинации между двумя плазмидами и их объединения в единую векторную молекулу. Белки, экспрессируемые уг>-генами одной плазмиды, вырезают и встраивают в растительный геном области Т-ДНК с чужеродными генами другой плазмиды. В настоящее время такие бинарные векторы наиболее часто используются для трансформации растительных клеток. [c.56]

    Трансгеноз (Transgenesis) Введение чужеродного гена в растительную или животную клетку и его передача в ряду поколений. [c.561]

    Наиболее простым способом отбора трансформированных клеток является введение в плазмиду вместо онкогенов тДНК генов устойчивости к антибиотикам. Однако попытки введения в вектор генов устойчивости к антибиотикам оказались безуспешными, так как они не экспрессировались в растительных клетках. [c.505]

Рис. 25.13. А. Введение нового гена в растительную клетку с помощью Agroba terium. Б. Корончатый галл, образующийся при заражении раны бактерией Agroba terium. Рис. 25.13. А. <a href="/info/1854969">Введение нового гена</a> в <a href="/info/105476">растительную клетку</a> с помощью Agroba terium. Б. <a href="/info/200157">Корончатый галл</a>, образующийся при заражении раны бактерией Agroba terium.
    Коинтегративный вектор. Один из способов, облегчающий введение чужеродной ДНК в геном растения, заключается в использовании коинтегративных векторов. Смысл подхода состоит в следующем (рис. 2.3). Весь процесс введения чужеродного гена в геном растений делится на два этапа клонирование гена, который следует встроить в растительный геном, и собственно трансформация растительной клетки. Эти два этапа осуществляются с помощью различных векторов. [c.54]

    Проблема введения в растительную клетку чужеродной ДНК также в принципе решена. Используются два основных подхода. Первый из них агробактериальная трансформация. Это слегка модифицированный естественный процесс горизонтального (то есть между отдаленными в систематическом отношении группами организмов) переноса генов от бактерий в растения. В природе существует большая группа почвенных бактерий из pojidi Agroba terium. Они могут вызывать у растений болезни типа рака — корончатый галл (опухоль) или бородатые корни . Выяснено, что с помощью специального механизма бактерии передают в генетический материал растений небольшой фрагмент своей ДНК, содержащий гены, активность которых приводит к образованию у растений опухоли или многочисленных корней. В них синтезируются вещества — опины, являющиеся питательным субстратом исключительно для агробактерий. Ученые просто вырезали из переносимого фрагмента ДНК бактериальные гены, вызывающие болезнь, и заменили их нужными им генами с соответствующими регуляторными элементами. Агро- [c.27]


    Для введения чужеродной ДНК в интактные клетки растений используется вектор, полученный на основе Т-ДНК Agroba terium, о которой говорилось выше (см. разд. 20.3.3). Для этого гены, ответственные ш образование опухоли на растении, удаляются и замещаются желаемыми. Носле переноса модифицированной Т-ДНК в соответствующую Ti-плазмиду Agroba terium бактерии культивируют вместе с кусочками листа. Эта система позволяет Т-ДНК встроиться к хромосому растения, в результате чего новый ген стабильно включается в растительный геном (рис. 20-72). К сожалению, этот метод успешно используется лишь для некоторых семейств двудольных растений [c.438]


Смотреть страницы где упоминается термин Растительные клетки, введение геном генов: [c.192]    [c.387]    [c.397]    [c.400]    [c.550]    [c.506]    [c.352]    [c.387]    [c.460]    [c.394]    [c.139]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Геном клетки



© 2025 chem21.info Реклама на сайте