Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Протопласты растительных клеток

    Очень важным фактором для успешного выделения жизнеспособных, нативных протопластов является подбор осмотического стабилизатора. С наличием клеточной стенки у растительной клетки связана регуляция ее водообмена. Сосущую силу формируют не только осмотические свойства клетки, но и тургор-ное давление. С увеличением количества воды в клетке тургорное [c.33]


    Одной из них стало введение свободной ДНК, называемой также векторной ДНК или просто вектором, в протопласты — растительные клетки без стенок (оболочек). Их удаляют, помещая эксплантаты в раствор ферментов из низших грибов. Дело в том, что клеточная стенка — серьезное препятствие для ДНК. В протопластах же единственной защитой остается плазматическая мембрана. Обычно ДНК внедряют в протопласты, используя полиэти-ленгликоль (плотный органический полимер, проникающий сквозь мембрану) или электрический пробой, при котором мембрану протыкает импульс напряжения. Эти процедуры не связаны с биологическими взаимодействиями и пригодны для любых клеток. Но получить полноценное растение из изолированных протопластов нелегко лишенная стенки клетка с трудом ее восстанавливает. К тому же регенерировать целое растение из изолированной клетки гораздо сложнее, чем из клетки или клеток в составе [c.103]

Рис. 13.2. Влияние растворов различной концентрации на растительные клетки. В растворе, водный потенциал которого выше, чем водный потенциал клетки (гипотоническая среда), вода за счет осмоса будет проникать в клетку и каетка набухает (становится тургесцентной). Если водный потенциал раствора ниже, чем водный потенциал клетки (гипертоническая среда), то вода покидает ее за счет осмоса, и живая часть клетки (протопласт) отстает от клеточной стенки и следует за сокращающейся вакуолью (плазмолиз). Если водные потенциалы клетки и раствора одинаковы (изотоническая среда), то никаких изменений не происходит. Рис. 13.2. Влияние <a href="/info/873392">растворов различной концентрации</a> на <a href="/info/105476">растительные клетки</a>. В растворе, <a href="/info/291885">водный потенциал</a> которого выше, чем <a href="/info/291885">водный потенциал</a> клетки (<a href="/info/1277943">гипотоническая среда</a>), вода за счет осмоса будет проникать в клетку и каетка набухает (становится тургесцентной). Если <a href="/info/463353">водный потенциал раствора</a> ниже, чем <a href="/info/291885">водный потенциал</a> клетки (<a href="/info/1277928">гипертоническая среда</a>), то вода покидает ее за счет осмоса, и <a href="/info/1899264">живая часть клетки</a> (протопласт) отстает от <a href="/info/98958">клеточной стенки</a> и следует за сокращающейся вакуолью (плазмолиз). Если водные потенциалы клетки и <a href="/info/1903977">раствора одинаковы</a> (<a href="/info/1278546">изотоническая среда</a>), то никаких изменений не происходит.
    Протопласт (Protoplast) Бактериальная, дрожжевая или растительная клетка, стенка которой разрущена ферментативным или химическим путем. [c.558]

    Изолированный протопласт — растительная клетка, лишенная клеточной стенки с помощью ферментативного разрушения или механическим способом. [c.8]

    В последние годы достигнуты большие успехи, связанные с генетической трансформацией клеток, в том числе и растительного происхождения. Схема трансформации включает в себя получение протопласта, введение в него необходимой генетической информации, формирование полноценной растительной клетки, клонирование и регенерацию. (Подробно техника генно-и1гженерных экспериментов будет описана в следующем разделе.) В данной схеме трансформированный протопласт — суспензионная культура — каллусная культура — целое растение (рис. 31.4) — наиболее тех- [c.498]


    Неэффективный способ доставки ДН К в растительные клетки Может использоваться для введения генов только в протопласты растительных клеток, из которых могут быть регенерированы жизнеспособные растения Имеют ограниченное применение, поскольку единовременно инъекцию можно сделать только в одну клетку манипуляции могут проводить только специалисты [c.380]

    Типичная растительная клетка состоит из протопласта, окруженного полупроницаемой мембраной. Этот протопласт со своей мембраной напоминает соответствующие структуры клеток всех высших организмов, если пе считать того, что в растущей клетке он содержит большую вакуоль, наполненную водой с растворенными в ней веществами. Вакуоль представляет собой, [c.505]

    Детальное изучение случаев сортовой устойчивости, зависящей от присутствия в тканях того или иного химического вещества, неизменно приводит к выводу, что роль подобных веществ состоит в том, что они являются участниками активных процессов борьбы растительной клетки с паразитическим микроорганизмом. В ходе ферментативных реакций, индуцированных паразитом, подобные вещества претерпевают превращения, давая начало высокотоксичным соединениям, накапливающимся в больших концентрациях в месте инфекции, либо образуя вещества, изменяющие физикохимическое состояние протопласта клеток растения-хозяина и т. п. [c.207]

    Высшие растения состоят из огромного числа клеток, определенным образом скрепленных друг с другом окружающими их клеточными стенками. Многие характерные свойства растений прямо или косвенно связаны с наличием этих клеточных стенок. Состав и внешний вид клеточных стенок непосредственно определяются тем, к какому типу принадлежит данная клетка и каковы ее функции. Вместе с тем основные принципы построения всех клеточных стенок поразительно сходны жесткие волокна целлюлозы погружены в матрикс, содержащий множество поперечных сшивок и состоящий из таких полисахаридов, как пектины и гемицеллюлозы, а также из гликопротеинов. Благодаря такому строению первичная клеточная стенка обладает большим запасом прочности при растяжении и способна пропускать лишь молекулы относительно небольшого размера. Если растительную клетку, лишенную клеточной стенки (протопласт), поместить в воду, то она осмотическим путем наберет воду, набухнет и лопнет. В то же время живое содержимое клетки, заключенное в оболочку, набухает и давит на последнюю, в результате чего возникает давление, известное под названием тургорного. Тургор строго регулируется и жизненно необходим как для увеличения размеров клетки, так и для механической жесткости молодого растения. [c.398]

    В отличие от клеток животных протопласты растительных клеток заключены в полужесткий деревянный ящик —.клеточную стенку. Независимо от того, какие изменения происходят внутри ящика, клетка не может увеличиваться в своих размерах, если ее стенки не способны растягиваться. Аналогичную ситуацию можно наблюдать и у животных например, у представителя членистоногих — омара, у которого все тело заключено в жесткий наружный скелет, состоящий преимущественно из хи- [c.276]

    Многие аспекты роста и развития растительных клеток были исследованы на культивируемых клетках-как одиночных, так и в составе каллуса. Наиболее ярким проявлением тотипотентности многих соматических растительных клеток является их способность давать начало целому растению. Протопласты-растительные клетки, лишенные своей жесткой стенки,-можно изучать in vitro теми же методами, что и клетки животных они тоже способны регенерировать целое растение. [c.207]

    Впервые термин изолировагшые протопласты был предложен Д.Ханстейном в 1880 г. Протопласт в целой клетке можно наблюдать во время плазмолиза. Изолированный протопласт — это содержимое растительной клетки, окруженное плазмалеммой. Целлюлозная стенка у данного образования отсутствует. Изолированные [c.176]

    Введение вектора в растительную клетку возможно при помощи липосом, причем для введения в протопласт растения наиболее эффективны липосомы, состоящие из фосфотидилсерина и холестерина. [c.505]

    Наличие прочной, относительно непроницаемой клеточной стенки определяет специфику взаимодействия растительных клеток друг с другом, а также с окружающей средой. Все живые клетки растения связаны между собой пмзмодесмами-миниатюрными регулируемыми цитоплазматическими каналами, выстланными плазматической мембраной, которые пронизывают клеточные стенки и обеспечивают переход многих растворенных веществ из клетки в клетку. Таким образом, все ясивые протопласты растительного организма составляют единую систему-так называемый симпласт. Остальное пространство, занятое клеточными стенками и отмершими пустыми клетг ками, по которым в растении транспортируется большая часть воды, называют апопластом. Фотосинтезирующие клетки производят сахара, которые переходят во все остальные органы и ткани растения через живые клетки флоэмы, составляющие часть симпласта. Клетки корней поглощают из почвы воду и растворенные минеральные вещества, транспортируемые затем к листьям через отмершие клетки ксилемы, т. е. часть апопласта. Почти весь азот, содержащийся в связанном виде в живых организмах, происходит в конечном счете из азота атмосферы азот воздуха фиксируется прокариотами, многие из которых образуют сложные симбиотические ассоциации с корнями растений. Явления специфического узнавания растительных клеток-взаимодействие растений с бактериями-симбионтами и с различными патогенами, избирательность при опылении цветковых растений и т.п.-обусловлены, видимо, узнаванием молекул, содержащих специфические последовательности сахарных остатков. Полагают, что в этих процессах узнавания участвуют лектины-весьма распространенные белки, опознающие те или иные сахара. [c.181]


    Закончившая рост взрослая типичная живая растительная клетка имеет следующие части оболочку, протопласт и вакуоль с клеточным соком. Протопласт — живое содержимое клетки. Оболочка и клеточный сок — продукты жизнедеятельности протопласта. Протопласт состоит из протоплазмы (цитоплазмы) и включенных в нее органоидов ядра, пластид, митохондрий (хондриозом). В молодой клетке, образовавшейся в результате деления, цитоплазма заполняет ее сплошь или почти сплошь. Вакуолизация, т. е. появление полостей, заполненных клеточным соком, происходит постепенно, по мере роста клетки. Во взрослой клетке цитоплазма тонким слоем выстилает внутреннюю поверхность оболочки образовавшаяся внутри клетки полость наполнена клеточным соком. [c.13]

    Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку, материал для построения которой секретирует сама находящаяся в ней живая клетка (протопласт). По своему химическому составу клеточные стенки растений отличаются от клеточных стенок прокариот и грибов (табл. 2.2). Клеточная стенка, отлагающаяся во время деления клеток растения, назьшается первичной клеточной стенкой. Позже в результате утолщения она может превратиться во вторичную клеточную стенку. На рис. 5.30 воспроизведена электронная микрофотофафия, на которой можно видеть одну из ранних стадий этого процесса. [c.204]

    Если растительная клетка контактирует с раствором, водный потенциал которого ниже, чем у ее содержимого (например, с концентрированным сахарным сиропом см. опыт 13.1), то вода будет выходить из нее за счет осмоса через плазмалемму (рис. 13.2). Сначала воды станет меньше в цитоплазме, а затем и в вакуоле, откуда она выйдет сквозь тонотшаст. Протопласт, т. е. живое содержимое растительной клетки, окруженное клеточной стенкой, спадется и отойдет от этой стенки, как бы сжавшись внутри нее. Этот процесс называется плазмолизом, а клетка в таком состоянии — плазмолизироваппой. Момент, когда протопласт еще прилегает к клеточной стенке, но уже перестал оказывать на нее давление, называется начальным плазмолизом. В этот момент клетка теряет тургор, т. е. становится вялой. Вода будет покидать протопласт до тех пор, пока его содержимое по водному потенциалу не сравняется с окружающим раствором. Тогда установится равновесное состояние, и спадение протопласта прекратится. [c.101]

    Повышение уровня этилена в растении стимулирует образование фитоалексинов (веществ, выполняющих роль антибиотиков у растений), повышает активность хитиназы (фермента, разрушающего хитин пищеварительного тракта насекомых или хитиноподобное вещество, из которого состоят стенки гифов патогенных грибов, после чего их протопласты ли-зируются ферментами растительной клетки), стимулирует синтез другого фитогормона — абсцизовой кислоты, затормаживающей процессы роста и деления клеток и стимулирующей синтез стрессовых белков. У некоторых растений этилен увеличивает содержание фенольных веществ, вредных для многих животных и ингибирующих рост растений. [c.364]

    Весьма тесно связаны друг с другом и пути, которыми в растительной клетке осуществляется окисление в акте дыхания различных по химической природе соединений. Так, из рис. 81 видно, что использованию в акте дыхания белков и жиров предшествует гидролитическое расщепление этих полимерных соединений. Образующиеся при этом продукты гидролиза с помощью имеющихся в распоряжении протопласта ферментных систем преобразуются в соединения, которые по своей природе могут быть включены в цикл Кребса либо непосредственно, либо после относительно несложных превращений. Ключевая роль в этих превращениях принадлежит коэнзиму А, с участием которого [c.270]

Рис. 20-9. Растительная клетка, лишенная стенки, т. е. протопласт, осмотически нестабильна, и при помещении в воду или гипотоническую внеклеточную жидкость, омывающую растительные клетки, набухает и лопается. Если же клетка окружена жесткой стенкой, она может набухать лищь в ограниченной степени. Давление, которое оказывает клетка на клеточную стенку, делает ее тургесцентной и обусловливает осмотическое равновесие при этом вода больше не поступает в клетку (см. схему 6-1). Рис. 20-9. <a href="/info/105476">Растительная клетка</a>, лишенная стенки, т. е. протопласт, осмотически нестабильна, и при помещении в воду или гипотоническую <a href="/info/1277596">внеклеточную жидкость</a>, омывающую <a href="/info/105476">растительные клетки</a>, набухает и лопается. Если же клетка окружена <a href="/info/1869787">жесткой стенкой</a>, она может набухать лищь в <a href="/info/26102">ограниченной степени</a>. Давление, которое оказывает клетка на <a href="/info/98958">клеточную стенку</a>, делает ее тургесцентной и обусловливает <a href="/info/312637">осмотическое равновесие</a> при <a href="/info/1173388">этом вода</a> больше не поступает в клетку (см. схему 6-1).
    Наличие жесткой относительно непроницаемой клеточной стенки в значительной степени определяет специфику взаимодействия растительных клеток друг с другом, а также с окружающей средой. Все живые клетки растения соединены между собой плазмодесмами -миниатюрными цитоплазматическими каналами, выстланными плазматической мембраной, которые пронизывают клеточные стенки и обеспечивают переход многих растворенных веществ из клетки в клетку. Таким образом, все живые протопласты растительного организма составляют единую систему- [c.405]

    Способность соматических клеток растений и регенерации в культуре дает возможность проводить с такими клетками разнообразные генетические манипуляции и получать трансгенные растения. Для гого чтобы облегчить попадание чужеродной ДНК в растительные клетки, их лишают жесткой оболочки. Этого можно добиться с помощью обработки клеток ферментами, гидролизующими связи в полисахаридах клеточной стенки В результате такой обработки клетки превращаются в иротоиласты (рис. 20-71). Носле введения в них чужеродной ДНК протопласты можно заставить вновь сформировать клеточную стенку, индуцировать деление и даже регенерировать новое растение [c.438]

    Протопласты - это растительные клетки, лишенные своей жесткой стенки. Их можно изучать in vitro теми же методами, что и клетки животных, но протопласты имеют еще и дополнительное преимущество, так как из них можно регенерировать целые растения. [c.440]

    Если растительная клетка выращивается изолированно, то форма ее обычно приближается к сферической (рис. 2.2), но если она растет в окружении других клеток, то они сдавливают ее, и тогда она принимает форму многогранника. Клетка из зоны растяжения стебля или корня по форме напоминает коро бочку длиной около 50 мкм, шириной 20 мкм и высотой 10 мкм. Объем ее равен приблизительно 10 000 мкм . В одном кубическом сантиметре (1 см ) при плотной упаковке помещается до 100-10 таких клеток. Структура растительной клетки сложна и высокодифференцированна, но в первом приближении мы можем вычленить в ней три главные зоны 1) клеточную стенку — сравнительно жесткое образование, по всей вероятности неживое, представляющее собой высокоструктурированную и в химическом отношении сложную смесь веществ, выделяемых протопластом 2) протопласт — живую часть клетки, в которой заключены все клеточные органеллы, суспендированные здесь в сложном растворе, и 3) вакуоли — неживые образования, как бы мембранные мешки, служащие резервуарами или хранилищами клетки они заполнены водным раствором поглощенных клеткой неорганических солей и органических веществ, представляющих собой продукты метаболической активности клетки. Клеточные стенки у растения играют роль скелета, т. е. обеспе  [c.24]

    Клетки растений отличаются от всех прочих клеток тем, чтО они заключены в довольно жесткий футляр , как бы помещены в коробочку. Про растительную клетку вполне можно сказать, что она живет в деревянном футляре , потому что в чив-ло химических компонентов клеточной стенки входят и те, которые придают древесине свойственную ей жесткость и прочность. У зрелой клетки стенка, очевидно, представляет собой неживое образование — продукт секреторной активности протопласта, отлагающийся в виде ряда последовательных слоев на различных стадиях развития клетки (рис. 2.28). Однако в клеточной стенке имеется также и какое-то количество белка, в том числе белка, обладающего ферментативной активностью. По за-верщении клеточного деления прежде всего отлагается первый слой—срединная пластинка, состоящая вначале главным образом из студенистых пектиновых веществ, но позднее инфильтрируемая более жесткой целлюлозой, разными прочими полисахаридами и, наконец, в одревесневших тканях — лигнином. [c.66]

    Рассмотрим теперь поступление воды в вакуоль и из вакуоли растительной клетки in situ (т. е. в растении). Вакуоль и окружающий ее протопласт заключены внутри клеточной стенки, через которую вода диффундирует свободно. (Клеточная стенка в этом смысле напоминает фильтровальную бумагу, которая тоже состоит из целлюлозы.) Клеточная стенка насыщена водой до тех пор, пока влажность почвы достаточна, а транспирация не слишком интенсивна. В этих условиях в об- [c.173]

    В искусственных условиях удается наблюдать и более сильное сокращение протопластов. Если мы поместим кусочек ткани в раствор более концентрированный, чем вакуолярный сок,, то отток воды из клеток будет продолжаться до тех пор, пока протопласты не отделятся от клеточных стенок и не сожмутся в комок в середине клетки. Наружный раствор легко проходит через клеточную стенку, которая практически не препятствует движению воды, и заполняет пространство между клеточной стенкой и сократившимся протопластом. Клетку в таком состоянии называют плазмолизированной (рис. 6.3). Если плазмолиз не слишком сильный и не слишком длительный, то клетка, после того как ее перенесут в воду, восстанавливает свой обычный тургор. В растительных клетках, испытывающих недостаток воды в воздушной среде, плазмолиза как такового не происходит, поскольку отсутствует свободный раствор, который мог бы заполнить пространство между протопластом и клеточной стен- [c.174]

    ГОГО полового способа для введения в растение признака устойчивости к болезни. Однако сейчас стало возможным пара-сексуальное слияние культивируемых соматических клеток. Обычные растительные клетки не могут сливаться в культуре, так как их стенки препятствуют объединению протопластов. Однако с помощью смеси ферментов, разрушающих клеточные стенки, их можно растворить. Вначале для отделения одной клетки от другой используется пектиназа. Затем для разрушения стенок отдельных клеток применяют целлюлазу. Протопласты (содержимое живых клеток) можно затем собрать в иде осадка путем осторожного центрифугирования, обращаясь с ними как со свободноживущими микроорганизмами, лишенными оболочек (рис. 14.20). Если разрушение стенок производят в гипертоническом растворе, чтобы предотвратить разрыв протопластов, то изолированные ( голые ) протопласты остаются живыми. В соответствующих условиях у них может вновь образоваться стенка, они начинают делиться и затем регенерируют в целое растение. Если протопласты от двух разных видов растений смешать в присутствии индуцирующих слияние агентов, таких, как полиэтиленгликоль, то небольшая часть этих протопластов сольется друг с другом, образовав гетерокарионы (рис. 14.21), т. е. клетки, содержащие множество ядер от разных источников (рис. 14.22). При слиянии ядер могут образоваться настоящие парасексуальные гибриды. [c.436]

    Помимо привычных методов гибридизации современный селекционер может воспользоваться для улучшения растительных культур методами молекулярной генетики. К их числу относятся введение в растительную клетку новой генетической информации с помощью плазмид, отбор новых типов из изолированных протопластов и соматическая гибридизация протопластов. Человек выращивает для своих нужд лишь небольшое число растений, а между тем существует множество еще неизученных растений, которые можно было бы широко использовать. К числу наиболее многообещающих видов относятся гваюла, дающая каучук, хохоба, дающая воск и масло, ЕсЫпосМоа, выращиваемая на зерно, и спаржевый горох, используемый для получения растительного белка. Новые методы разведения растений с применением тканевых культур и регулируемого воспроизведения могут быть полезны также и в лесоводстве. [c.527]

    Помимо фотосинтеза в протопластах осуществляется много других биосинтетических процессов, имеющих важное значение для растительной клетки. Например, все жирные кислоты в клетке образуются с помощью ферментов, находящихся в строме хлоропластов, и при этом используются имеющиеся в строме АТР, КАВРН и углеводы. Кроме того, в хлоропластах происходит восстановление нитрита (N0 ) до аммиака (NHз) за счет энергии электронов, активированных светом в растениях этот аммиак служит источником азота при синтезе аминокислот и нуклеотидов. Таким образом, значение хлоропластов для метаболизма клетки далеко не ограничивается их уникальной ролью в фотосинтезе именно этим и объясняется то, что они обычно занимают значительную часть внутриклеточного пространства (рис. 9-40). [c.47]

    Основными элементами клетки являются цитоплазма и ядро.. Цитоплазма представляет собой густую полужидкую массу. Ядро имеет более плотную консистенцию. Растительные клетк и заключены в прочную клеточную оболочку. Все содержимое клетки, лишенное клеточной оболочки, называется протопластом. Помимо ядра, в цитоплазме клетки обнаруживаются и другие крупные органеллы, видимые под световым микроскопом — пластиды и митохондрии (рис. 6). Кроме того, в ней находятся также многочисленные субмикроскопические структуры, такие, как аппарат Гольджи, эндоплазматическая сеть, рибосомы,, микротрубочки и др. Все они погружены в гиалоплазму, слул<а-щую матриксом цитоплазмы. [c.22]

    Строение. Цитоплазмой (протоплазмой) называется все содержимое клетки, за исключением ядра и оболочки. Термин цитоплазма был предложен в 1882 г. Э. Страсбургером. По своему значению он более точно указывает на то, что речь идет именно о плазме клетки, а не обо всем содержимом клетки — протопласте, или протоплазме в ее широком понимании. В молодой растительной клетке цитоплазма занимает большую часть ее объема. В эмбриональных клетках растений и животных цитоплазма отличается слабо развитой системой внутриклеточных мембран, почти полностью состоит из гиалоплазмы (основного матрикса) и рибосом, В процессе эволюции клетки возникли внутриклеточные мембраны, а также некоторые клеточные органеллы, например митохондрии, пластиды и центри-оли, составляющие большую часть цитоплазмы (рис. 9). [c.25]

    При описании митоза спермиогенеза в пыльцевой трубке некоторые исследователи указывают на слабое развитие веретена в метафазе у некоторых видов растений (гнездовка). Вместе с тем у других представителей растительного мира (тюльпаны, лилии) формирование веретена хорошо выражено. Разделение протопласта генеративной клетки осуществляется во время цитокинеза. В редких случаях цитокинез не происходит, а образуется двухъядерная генеративная клетка. [c.160]

    Этапным периодом для развития метода культуры клеток можно считать 70-е годы, когда были сделаны успехи в разработке способа получения изолированных протопластов растений, а также открытие гибридизации соматических клеток. Изолированные протопласты высших растений и культивируемые клетки животных стали объектом клеточного конструирования путем гибридизации или введения в них чужеродного генетического материала (клеточных органелл, бактерий). Применение методов клеточного конструирования служит задачам улучшения свойств клеток-продуцентов в культуре, а в случае растительных клеток также получению растений с новыми свойствами (в силу тотипо-тентности растительной клетки). [c.7]

    В последние 15 лет в области клеточной инженерии растительной клетки выделилось направление по созданию новых клеток и клеточных систем путем введения микроорганизмов в клетку или в популяции культивируемых клеток растений. Экспериментально создаваемые клеточные системы называют ассоциациями по аналогии с ассоциациями, формирующимися в природе между организмами разных видов. При этом исследования направлены на получение ассоциаций внутриклеточного (эндосим-биотического) или межклеточного (экзосимбиотического) типа. В первом случае проводят индуцированное введение микроорганизмов в изолированные протопласты высших растений. Во втором — совместно культивируют клетки или ткани растений с микроорганизмами. Хотя, как будет видно при дальнейшем изложении, исходно задаваемая в эксперименте локализация микроорганизмов — внутри клеток или в межклетниках тканей — не всегда сохраняется в процессе создания и культивирования таких систем. [c.52]

    При получении ассоциаций на основе изолированных протопластов или культивируемых клеток высших растений с микроорганизмами предполагается, что клетки или популяции клеток растений должны приобретать новые свойства, обусловленные присутствием в них клеток микроорганизмов. Возможность получения из изолированного протопласта клетки, если она сохранится у протопластов и после введения в них микроорганизмов, создает предпосылку для модификации клеток. Совместное культивирование растительных клеток и микроорганизмов позволило бы получать популяции растительных клеток с новыми свойствами, приобретенными в результате их взаимодействия с клетками микроорганизмов. И наконец, способность растительной клетки in vitro дать начало целому растению открывает возможность направленного изменения растений. Очевидно, последнее осуществимо при условии, что микроорганизмы, введенные внутрь [c.52]

    В связи с проблемой сохранения интактности вводимых в протопласты органелл или микроорганизмов тот и другой способы имеют свои недостатки. Поглощение путем эндоцитоза приводит к изолированию вводимых в протопласт объектов в везикулах из плазмалеммы протопласта. Поскольку эти везикулы могут сливаться с лизосомальным аппаратом растительного протопласта, существует опасность, что это приведет к разрушению вводимого чужеродного материала. При слиянии происходит интеграция мембраны протопласта растения и микроорганизма, нарушение целостности микроорганизма и освобождение его органелл внутрь растительного протопласта. Обнаруженное для зеленых водорослей слияние с протопластами может рассматриваться, таким образом, как способ введения в растительную клетку не целых микроорганизмов, а интактных органелл. В качестве альтернативного пути, позволяющего преодолеть недостатки обоих рассматриваемых способов, предлагается заключать микроорганизмы в искусственные мембраны — липосомы (рис. 20). Этот прием уже был использован в опытах по введению в протопласты лука одноклеточных цианобактерий, заключенных в липидные капли. Преимущества данного методического приема видятся в том, что искусственные мембраны будут сливаться с плазмалеммой протопласта, освобождая таким образом интактные клетки микроорганизмов в цитоплазму протопласта. [c.59]

    В пределах конкретных видов для многих приложений генетической инженерии растений важно идентифицировать культивируемые растительные клетки, которые как компетентны для трансформации, так и способны регенерировать в целые растения. Эксплантаты могут варьировать по сложности от изолированных протопластов до целых проростков или фрагментов зрелых органов (рис. 2.6). Исходя из предположения, что поверхность по крайней мере некоторых клеток эксплантатов двудольных растений доступна для контакта с агробактериями и эти клетки способны делиться in vitro, при разработке системы трансформации нового растения прежде всего надо рассмотреть возможность воспроизводимой регенерации данных растений. Многое зависит от эмпирического опыта подбора подходящей среды для регенерации побегов. Однако нельзя не учитывать основную анатомию, физиологию и характер развития выбранного растения при идентификации подходящих эксплантатов для культуры ткани, которые на какой-то стадии перейдут к регенерации побегов. Без этих фундаментальных знаний поведение эксплантатов будет непредсказуемым и, следовательно, обострит любые проблемы, связанные с идентификацией, возможно, редких трансформированных тканей. Например, общие внешние условия роста донорного растения, размер эксплантата и онтогенез выбранного в качестве источника органа часто определяют последующее поведение в культуре ткани. [c.103]


Смотреть страницы где упоминается термин Протопласты растительных клеток: [c.36]    [c.505]    [c.506]    [c.441]    [c.166]    [c.172]    [c.206]    [c.126]    [c.506]    [c.30]    [c.58]   
Клеточная инженерия (1987) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Протопласты растительных клеток как объект биологического конструирования



© 2025 chem21.info Реклама на сайте