Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний экранирование ядра

    Однако это правило точно не выполняется, поскольку числа элементов в периодах повторяются. Действительно, после второго периода, в котором N2= , следует третий период с N3=8, а после четвертого Л/4=18 следует пятый с Л 5=18. в чем причина этих повторений Третий период начинается с Ма, имеющего электронную структуру (15)2(2з)2(2р) (35)>. Затем в атоме магния завершается заполнение Зх-уровня, после чего в следующих элементах заполняются Зр-уровни, и, наконец, такое заполнение завершается в аргоне ( ==18) Аг(15)2(2я)2 (2р)2(35)2(3р) . Однако главному квантовому числу 3 соответствуют также состояния Зс , поэтому аргон не должен был бы быть благородным газом, поскольку на нем не завершается электронная оболочка с п=3. Тем не менее многочисленные опытные данные (химические и спектроскопические) показывают, что энергия З -со-стояния существенно выше энергии Зр-состояния, более того, она выше, чем энергия 45-состояния. Поэтому следующий за аргоном элемент — калий (2=19)—имеет электронные оболочки (15) (25)2(2р) (35)2(3р) (45). По чему же девятнадцатый электрон калия забирается на уровень 4я при пустующих состояниях 3 Это кажущееся противоречие связано с приближенностью описания взаимного отталкивания электронов на основе модели экранирования, которая была использована в предыдущем изложении. В этой приближенной модели отталкивание сводилось к уменьшению эффективного заряда ядра. При таком рассмотрении энергия электрона с п = 4 должна быть выше, чем при п=3. [c.316]


    Естественно, что такая сокращенная форма таблицы не имеет каких-либо преимуществ перед обычной развернутой таблицей, однако она четко-выявляет дифференциацию строения двух электронных оболочек, находящихся под самыми внешними электронами, а следовательно, и причину отличия свойств водорода, лития, натрия от свойств тяжелых щелочных металлов в первой группе. Она указывает также на особую роль гелия,, являющегося не только первым наиболее легким инертным газом, но и элементом, которым начинаются почти совершенно не похожие на него во всех отношениях, кроме строения внешней электронной оболочки, щелочноземельные металлы. В этой таблице очень ясно видна значительная разница между электронным строением бериллия и магния и заметное отличие магния от щелочноземельных металлов. Чем левее расположен элемент в I и II группах этой таблицы, тем слабее связь его внешних электронов с ядром, экранированным в той или иной степени внутренними оболочками. Мерой прочности этой связи и металличности элемента может служить потенциал ионизации, т. е. энергия, которую необходимо затратить на отрыв внешних электронов. Ионизационные потенциалы, соответствующие отделению последнего валентного электрона или всех внешних электронов (см. рис. 2), подтверждают правильность смещения элементов в I и II группах на основании анализа их внешних электронных конфигураций. Эти смещения отражают различное экранирование заряда ядра внутренними электронными оболочками и дают объяснение различий свойств элементов с одинаковым строением внешних оболочек. Наиболее разительной оказывается разница между водородом и литием с одним электроном на внешней s-оболочке и между гелием и бериллием с двумя электронами на внешней s-оболочке. У более тяжелых элементов эта разница не столь велика, но также может быть весьма существенной. [c.30]

    Энергия ионизации у магния больше, чем у натрия, поскольку она дополнительно идет на распаривание 25-электронов. Это поглощение энергии согласуется с известным правилом Хунда. У алюминия энергия ионизации меньше, чем у магния, так как удаленный р-электрон экранирован от ядра -электронной парой. [c.179]

    Экспервмевтальные проявления С. Наличие отличного от нуля с. электронной подсистемы приводят к тому, что у молекулы в однородном магн. поле наблюдается расщепление уровней энергии, причем иа величину этого расщепления влияет хим. строение молекулы (см. Электронный парамагнитный резднанс). Наличие ненулевых спинов атомных ядер также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. Ядериый магнитный резонанс). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигаю-ыщм величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у атомов тяжелых элементов, когда становится невозможным говорить.о том или ином С. атома или молекулы, а можио говорить лшш> [c.399]


    Характеристика элемента. Электронная конфигурация Mg Is22s22p 3s2 по сравнению с натрием имеет одну существенную особенность двенадцатый электрон помещается на 25-орбиталн, где уже имеется е . Взаимное экранирование двух электронов, находящихся на одной и той же орбитали, невелико. Следовательно, должно резко возрасти влияние ядра, что, в свою очередь, приведет к сжатию атома — уменьшению его радиуса. Действительно, эфф Mg = 2,25, а 2эффка=1,84 и атомный радиус магния Rug 0A6 А под влиянием ядра стал значительно меньше, чем у натрия ( N3 = 0,19 А). Приблизившиеся к ядру электроны оторвать труднее и поэтому увеличился потенциал ионизации. Однако второй потенциал ионизации в три раза меньше, чем у натрия, и может, следовательно, реализоваться состояние iMg +. Такой ион обладает значительным поляризующим действием и способен к образованию как ионных, так и ковалентно-полярных связей, а за счет своей свободной З -орбитали еще и донорно-акцепторных. Именно поэтому магний, используя четырехлепестковые З -орбитали (совершенно пустые), входит в четырехпиррольное кольцо порфирина и образует систему хлорофилла (см. рис. 47). [c.247]


Смотреть страницы где упоминается термин Магний экранирование ядра: [c.169]    [c.517]    [c.294]    [c.242]   
Лекции по общему курсу химии (1964) -- [ c.23 , c.24 , c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Экранирование



© 2024 chem21.info Реклама на сайте