Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектрометры ядериого магнитного резонанса

    Величина магнитного момента всех ядер одного изотопа строго одинакова и поэтому на первый взгляд кажется, что в спектре должна присутствовать только одна линия поглощения. На самом деле это не так. Кроме внешнего магнитного поля, в любой молекуле имеются внутренние поля, обусловленные движением электронов. В зависимости от положения, которое занимает данный атом и его ядро в молекуле, оно окажется в определенном внутреннем поле. Поэтому для ядер, находящихся в молекуле в различных положениях, условие резонанса будет наступать при различных значениях внешнего поля в зависимости от того вклада, который вносит в данном месте внутреннее поле. Этот вклад очень мал обычно внутренние поля примерно в миллион раз слабее внешнего. Однако современные спектрометры ядерного магнитного резонанса имеют очень высокую разрешающую способность и дают отдельные линии поглощения для ядер, которым соответствует разница в напряженности внутренних полей, меньшее одной стомиллионной доли от напряженности внешнего поля. [c.343]


    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]

    Оценим чувствительность метода СПЯ для регистрации спектров ЭПР короткоживущих РП. При комнатной температуре в полях порядка нескольких тесла, которые применяются в современных экспериментах по ядерному магнитному резонансу, равновесная поляризация спинов протонов порядка 10 В этих условиях удается регистрировать спектр ЯМР, если в образце находится порядка 10 протонов. Значит, спектрометры ЯМР позволяют измерить поляризацию порядка = 10 - 10 = 10 . Пусть г - время жизни РП, оно порядка наносекунд, а Т, - время релаксации поляризованных ядер - это время порядка секунд. Если стационарная концентрация РП равна N, то стационарная концентрация поляризованных ядер равна [c.132]

    В большинстве спектрометров ядерного магнитного резонанса ча-о гота переменного поля фиксирована, а напряженность постоянного магнитного поля изменяется, что позволяет достигать условий резонанса (поглощение излучения). Протоны, занимающие в молекуле разные иоложения, могут быть неэквивалентными в магнитном отношении, и условия резонанса для них достигаются при различной напряженности наложенного поля. В связи с этим на кривой зависимости количества поглощенного излучения от напряженности наложенного поля наблюдается ряд пиков. Положение пиков зависит от химического окружения протонов, а высота пиков является мерой числа протонов, имеющих одинаковое окружение. Тонкая структура, характерная для многих пиков, дает богатую информацию о взаимном пространственном расположении ядер и о природе соседних атомов. [c.30]


    Точно так же, как электроны обладают спином, который определяется спиновым квантовым числом и который диктует, что данную молекулярную орбиталь могут занимать только два электрона с противоположными (т. е. спаренными ) спинами, ядерные частицы — протоны и нейтроны — также обладают спиновыми свойствами. В любом данном ядре некоторые из спинов могут быть спарены, однако имеются остаточные неспаренные спины. Ясно, что это характерно для ядер с нечетным массовым числом (нечетным суммарным числом протонов и нейтронов). Вращающееся заряженное тело можно рассматривать как маленький магнит, который при помещении в магнитное поле может принять две разные ориентации в направлении поля или против поля. Эти ориентации имеют разную энергию. При нормальных условиях ббльшая часть ядер занимает низший энергетический уровень. Облучение с энергией, соответствующей энергетической щели между двумя уровнями (в радиочастотном районе), поглощается, промотируя ядра с одного уровня на другой, и это поглощение можно зарегистрировать. Точная частота (т) зависит от типа ядра ( Н, и т. д.) и электронного окружения, в котором оно находится, а также от силы магнитного поля. Схема спектрометра ядерного магнитного резонанса (ЯМР), применяемого для регистрации этих изменений, приведена на рис. 3.10. [c.70]

    Для частиц, имеющих не равный нулю электронный спин, т. е. для парамагнитных частиц, применяется метод исследования, называемый электронным парамагнитным резонансом (ЭПР). Этот метод, применяемый к ядрам, называют ядерным магнитным резонансом (ЯМР), причем в зависимости от того, на каких ядрах изучают резонанс, его обозначают как Н-ЯМР (часто ПМР — протонный магнитный резонанс), С-ЯМР, Р-ЯМР и т. п. Поскольку факторы Ланде для разных ядер отличаются, то ЯМР-спектрометры, предназначенные для работы с разными ядрами, имеют набор генераторов электромагнитного излучения, соответствующих разным ядрам и приспособленных для работы с одним источником постоянного магнитного поля. [c.179]

    Теория химического строения учитывает особенности элемента углерода (см. 15.2). Изучение строения органических соединений остается основной задачей органической химии и в наше время. Для этого кроме химических широко применяются физические методы исследования, такие, как спектроскопия, ядер ный магнитный резонанс, масс-спектрометрия, определение электрических моментов диполей, рентге-но- и электронография. [c.274]

    Спектрами первого порядка являются спектры, в которых разность химических сдвигов мультиплетных сигналов резонанса взаимодействующих ядер, выраженная в герцах, значительно превыщает константу спин-спинового взаимодействия (Дб- //>10, где Лб — разность химических сдвигов, м. д. V — рабочая частота спектрометра, МГц / — константа спин-спинового взаимодействия в герцах) и каждая из групп ядер магнитно эквивалентна. [c.52]

    Спектроскопия ядерного магнитного резонанса (ЯМР) является наиболее надежным методом для определения степени стереорегулярности полимеров. Принцип ЯМР-спектроскопии основан на прецессии магнитного вектора вращающихся атомных ядер во внешнем магнитном поле. Оценка стереорегулярности методом ЯМР основана на том факте, что частота прецессии вращающихся ядер в молекуле зависит от ее окружения. Всегда существует сдвиг частоты прецессии от опорной величины (как правило, в тетраметилсилане). Сдвиг возникает из-за экранирования атомных ядер внутримолекулярными магнитными полями. Величина сдвига частоты (Гц), поделенная на рабочую частоту (МГц) спектрометра называется химическим сдвигом Sи измеряется в частях на миллион (ррш, промилле). Каждая структурная единица (например, тт, ттт, ттт,т, гг, пт, тт) имеет характеристический химический сдвиг, и ее доля определяется по относительной высоте пика. [c.37]

    Чистое органическое вещество. Читая работы классиков органической химии, невольно обращаешь внимание на то, с какой тщательностью они описывают полученные ими органические вещества, сколько внимания уделяют их очистке и характеристике. В современных публикациях эта стадия работы химика-органика выглядит гораздо более лаконичной дается брутто-формула, температура плавления или кипения, а далее следуют различные современные характеристики, полученные с помощью физико-химических методов исследования — данные оптических спектров, ядер-ного магнитного резонанса (ЯМР), масс-спектрометрии и др. Такое описание зачастую создает у начинающего химика-органика ложное впечатление, что современные методы исследования избавляют его от необходимости тщательной очистки вещества, что эти методы сами по себе способны дать правильный ответ. Нет ничего опаснее и вреднее этого заблуждения Правильный анализ, точная температура плавления, правильная спектральная или иная характеристика возможны только при работе с идеально чистым веществом. Данные исследования загрязненного вещества могут явиться причиной серьезных ошибок. Поэтому проблема очистки веществ остается, как и раньше, весьма актуальной. [c.470]

    Спектрометр для измерения ядерного магнитного резонанса состоит из большого магнита для поляризации ядер, источника энергии для возбуждения ядер и приемника для наблюдения переходов энергии. Существует [c.266]


    Парамагнитные системы можно исследовать не только методом электронного парамагнитного резонанса [1—3], но и методом ядерного магнитного резонанса. Поскольку каждая группа эквивалентных ядер в ион-радикальной паре характеризуется лишь единственной синглетной линией ЯМР, спектр ЯМР такой пары в большинстве случаев легче интерпретировать, чем соответствующий спектр ЭПР. Специфическим преимуществом метода ЯМР является возможность определения по знаку и величине контактного сдвига в спектре непосредственно знака и величины константы сверхтонкого взаимодействия (СТВ), в то время как спектр ЭПР дает только абсолютную величину константы СТВ. Наряду с возможностью определять большие значения констант СТВ, вплоть до 5,0 Гс, метод ЯМР позволяет измерять незначительные расщепления, что лежит уже за пределами разрешающей способности спектрометров ЭПР. Поскольку методом ЯМР можно исследовать любые ядра с магнитным моментом, отличным от нуля, этот метод можно применять непосредственно для исследования состояния ядер щелочных металлов в ион-радикальных парах наблюдения можно вести как за ароматической частью ионной пары, так и за катионом. Изучение ширины резонансных линий дает сведения о внутримолекулярных релаксационных процессах, а это в свою очередь позволяет получить данные о строении ионной пары. [c.318]

    В приведенном ниже материале основное внимание будет уделено методу протонного магнитного резонанса, так как а) большинство коммерческих спектрометров предназначено в первую очередь для снятия спектров протонного резонанса и б) этот метод находит наибольшее применение. Однако будут приведены и некоторые сведения о потенциальной ценности исследований других ядер. [c.386]

    Уравнение (34) показывает, что резонанс магнитных ядер наблюдается не только при точном совпадении частоты их прецессии о с частотой вращающегося магнитного поля радиочастотного генератора Ну, но и в некотором интервале частот, определяемом временем спин-спиновой релаксации Т . Следовательно, в однородном магнитном поле Н спектральные линии ЯМР имеют конечную ширину, которая является естественной и не может быть улучшена дальнейшим усовершенствованием ЯМР-спектрометра. [c.35]

    Спектроскопия ядерного квадрупольного резонанса (ЯКР) применяется в химии несколько реже методов магнитной радиоспектроскопии. Метод ЯКР основан на поглощении радиоволн за счет изменения ориентации электрических квадрупольных моментов некоторых ядер (С , и др.) в неоднородных внутримолекулярных электрических полях, создаваемых валентными электронами. Положение линий ЯКР чрезвычайно сильно зависит от тонких деталей структуры исследуемого вещества, но недостаточная чувствительность метода ограничивает его применение чистыми кристаллами с относительно высоким содержанием атомов, ядра которых обладают квадрупольным моментом. В настоящее время разрабатываются импульсные спектрометры ЖР повышенной чувствительности, которые уже в последние годы привели к более широкому распространению метода ЯКР в химических исследованиях. [c.294]

    Что можно сделать для уменьшения шума в спектрометре В любой системе значение С/ГО можно уменьшить путем увеличения сигнала, уменьшения уровня шума или того и другого вместе. Наиболее просто уровень шума можно уменьшить путем фильтрации высокочастотных компонент выходного сигнала спектрометра с помощью ВС-фильтра. Такие фильтры есть во всех спектрометрах (а оптимальные постоянные времени для фильтра при данных скоростях развертки можно узнать у фирмы, выпускающей данный спектрометр). Чем меньше скорость развертки, тем больше допустимая величина постоянной времени фильтра, при которой не происходит чрезмерных искажений линий спектра, т. е. тем сильнее отфильтровывается шум и увеличивается значение С/Ш. Такая зависимость наблюдается во всех случаях, кроме тех, когда имеет место явление, известное под названием радиочастотного насыщения. Это явление наблюдается, когда числа магнитных ядер, находящихся на двух энергетических уровнях, становятся более или менее одинаковыми и сигнал резонанса исчезает. Сам акт наблюдения сигнала производит в системе возмущение, сдвигающее систему к такому равновесному состоянию, но если это возмущение незначительно, то мощность наблюдаемого сигнала прямо пропорциональна мощности приложенного радиочастотного сигнала. Поэтому для получения максимального значения отношения С/Ш необходимо использовать максимально возможную мощность. Для того чтобы избежать насыщения, при уменьшении скорости развертки следует уменьшить и мощность приложенного сигнала. Как всегда, основная проблема заключается в согласовании различных факторов между собой. Метод увеличения значения С/Ш путем использования низкой скорости развертки и большой [c.310]

    Использование спектрометров с высокой напряженностью магнитного поля оказывает большую помощь при исследовании ядерного резонанса веществ, дающих сложные спектры. Однако вполне понятно, что этот путь ограничен техническими возможностями. Кроме того, повышение напряженности поля мало эффективно в тех случаях, когда сложные спектры возникают вследствие магнитной неэквивалентности химически эквивалентных ядер, т. е. когда ядра одной группы, будучи химически эквивалентными, имеют неравные константы спин-спиновой связи с каким-либо третьим ядром спиновой системы. Так, например, если 1,1-дифтораллен I дает простой спектр I порядка, спектр 1,1-дифторэтилена II относится к сложным спектрам, ввиду того, что здесь два протона расположены неравноценно По отношению к какому-либо из ядер фтора. [c.145]

    Дальнейшее увеличение эффективной чувствительности может быть достигнуто путем полного устранения (развязки) спин-спинового взаимодействия различных ядер (гетероядерный двойной резонанс). Например, если магнитными ядрами в молекуле являются только Н и то широкополосное облучение на частоте протонов с использованием либо шумовой модуляции, либо очень мощного когерентного радиочастотного поля дает спектр ЯМР с полной развязкой, состоящий из серии синглетов. Спин-спиновое взаимодействие между ядрами С не наблюдается из-за малой вероятности нахождения в молекуле двух соседних атомов-углерода-1 С. Эксперименты, связанные с облучением мощным высокочастотным полем, могут проводиться только на спектрометрах, способных работать в режиме разделения во времени. Метод заключается в попеременном облучении образца основным радиочастотным полем и дополнительным нолем для развязки спин-спинового взаимодействия, В случае фрагментов С—Н облучение протонов вызывает увеличение интенсивности сигналов С благодаря положительному ядерному эффекту Оверхаузера (см. стр. 405). Меньший эффект характерен для тех случаев, когда атом углерода не связан непосредственно с атомом водорода. [c.389]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Особое значение в исследованиях ВМС нефти и других каустобиолитов приобрела спектрометрия протонного магнитного резонанса (ПМР), позволяющая измерять относительное содержание незамещенных атомов Н в ароматических ядрах (На 6,5—9,0 м. д. в б-шкале) протонов в группах СН, СНз и СНд в а-положениях к ароматическим ядрам, группам С=0 и атомам 8 и О в неароматических звеньях молекул (Н 2,0—4,0 м. д.) протонов в группах СН и СНз, удаленных от ароматических ядер и гетерофункций, и СНз в р-положениях к последним (Н3 1,0— 2,0 м. д.) протонов в еще более удаленных СНд-группах (Н м. д.) и иногда протонов групп ОН, сигналы [c.191]

    Спектрометрия ядерного магнитного резонанса приобретает важное значение в исследованиях, связанных с переработкой нефти. Этот метод может теперь рассматриваться па рапных основаниях с инфракрасной и ультрафиолетовой спектрометрио , а также масспектрометрией и газовой хроматографией он дополняет и расширяет эти методы, занимает меньше времени и дает возможность получать дополнительные данные при аналитических исследованиях. Ввиду toi o что химия нефти связана преимуще-ствеппо с углеводородами и их производными, наибольшее значение имеет резонанс ядер водорода. Следует также иметь в виду резонанс ядер и других элементов, таких как ал юминий, бор, азот и фтор. [c.43]

    Расширяется круг доступных технологу тонких физических методов. Кроме традиционных дифракционных методов (рентгено- и электронография) применяют нейтронографию, мессбауэрографию, появились. методы каналирования тяжелых частиц и электронов Работы по изучению минеральных веществ и продуктов переработки невозможны без исследования их электронных и колебательных спектров. Развиваются новые спектральные методы, растет их значение. Вслед за эмиссионной и абсорбционной рентгеновской спектроскопией получили развитие электронная рентгеновская спектроскопия и ее раздел — оже-спектроскопия, которые открывают новые возможности изучения процессов и веществ. Ценную химическую информацию дает мессбауэровска (ядерная 7-резонансная)" спектроскопия, которая во многих научных центрах становится рядовым, широко применяемым методом. Достижения радиоспектроскопии (электронный парамагнитный и ядер-ный магнитный резонанс, в том числе в релаксационном варианте) обеспечивают возможность изучения жидких и твердых веществ почти всех элементов периодической системы. Давно используются магнитные измерения. Все чаще привлекается масс-спектрометрия. [c.200]

    Указанные выше факторы позволяют утверждать, что наибольшее практическое значение (для химика-органика) им"еют два вида спектроскопии ЯМР спектроскопия ЯМР Н (или протонный магнитный резонанс, ПМР) и спектроскопия ЯМР при естественном содержании изотопа - С (или углеродный магнитный резонанс). Среди других магнитных изотопов прежде всего следует выделить ядра Р и Ф. Спектры ЯМР этих ядер хорошо изучены и широко используются на практике. В последние годы в связи с Биедрением мультиядерных спектрометров значительно вырос интерес к измерению спектров таких тяжелых ядер, как Ве, 1 В, [c.35]

    Практически все современные спектрометры ЯМР располагают возможностью проведения экспериментов по двойному ядерному магнитному резонансу. Этим термином объединяют ра-зличные эксперименты, связанные с облучением спиновой снстемы однов- ременно двумя ВЧ-полями. Одно из этих полей, имеющее частоту V) и амплитуду Я] (гл. 1, 3), называется полем регистрации, поскольку частота V) лежит в диапазоне частот резонанса ядер с гиромагнитным отношением 1 (V) =- ]Яо). Второе ВЧ-поле имеет частоту У2 и амплитуду Нг. Оказывается, что прн некоторых условиях спектр, наблюдаемый на частоте VI, зависит от частоты V2 и амплитуды Нг. Одно из условий. состоит в том, чтобы частота второго поля находилась в резонансной области других ядер с гиромагнитным отношением 2(v2=2Я0). В том случае, если двойной резонанс называют гомоядерным.Так, возможен двойной резонанс типа ЧТ— Н ( протоны наблюдаются, протоны облучаются ). В том случае, если 1 2, говорят о гетероядер- [c.126]

    Отдельные ядра имеют сильное различие в резонансе,, поэтому различают спектроскопию высокого разрешения для ядер Н (протонный магнитный резонанс), С, Р и т,п, В качестве эталонов выбираются вещества, сигнал ядер которых находится в более сильном поле, чем сигналы соответствующих ядер большинства органических соединений. В ПМР-спектрометрии сигналы эталонов (гексаметилдиси-локсан, хлороформ, бензол, диоксан, хлористый метилен и т, д.) определяются по отношению к тетраметилсилану (ТМС) — (ОНз)451, сигнал которого принят за нулевую отметку. [c.42]

    В аналитической химии за последнее время приобретают распространение также и методы, основанные на свойствах, связанных не с валентными или оптическими электронами, а с ядрами или электронами внутренних электронных оболочек. Свойства, определяемые ядрами, используются в таких методах, как масс-спектрометрия, метод ядерного магнитного резонанса, методы, связанные с ядерными реакциями (например, радиоакти-вационный анализ), методы, основанные на радиоактивности изотопов, и др. На свойствах элементов, связанных с внутренними, трудновозбудимыми электронами, основан рентгеноспектральный анализ. Поскольку в этих методах используются свойства веществ, зависящие от ядер или ближайших к ядру электронов, практически не участвующих в образовании химических связей, во многих случаях эти методы не требуют предварительного разложения вещества. Кроме того, эти методы обладают высокой специфичностью и чувствительностью. [c.7]

    Применение о-метилоксимов карбонильных производных в газовой хроматографии, масс-спектрометрии и при измерении ядер-ного магнитного резонанса. (НФ НПГСили SE-30 при 230°.) [c.39]

    В XX столетии вместе с бурным развитием техники и промышленности в химию стали внедряться новые физические методы исследования спектроскопия, рентгеноскопия, масс-спек-трография и масс-спектрометрия, электронография, нейтронография, метод меченых атомов и радиоактивных изотопов,, парамагнитный и ядерный магнитный резонансы, эффект Мёссбауэра и др. Широко стали использовать новейшую аппаратуру электронный микроскоп, счетчики и ускорители частиц,, атомные реакторы, хроматографы и др. При помощи этих разнообразных методов и аппаратуры удалось проникнуть в недра молекул, атомов и ядер. Изучение строения атома и ядра помогло приподнять завесу над тайной периодического закона я овладеть им. [c.53]

    Техника наблюдения сигналов электронного резонанса принципиально ничем не отличается от методов наблюдения сигналов ядерного резонанса при непрерывном воздействии переменного поля. Однако в связи с тем что магнитный момент электрона значительно больше магнитных моментов ядер, поглощение наблюдается при более высоких частотах, лел<ащпх ул<е в диапазоне сверхвысоких частот (СВЧ). Например, при - = 2,0023 (свободный электрон) для получения электронного поглощения в поле с напрял<енностью около 3000 Гс требуется переменное поле с частотой 9000 МГц (трехсантиметровый диапазон). Вследствие этого в спектрометрах для наблюдения электронного резонанса применяется техника сантиметровых или миллиметровых диапазонов. В частности, вместо высокочастотного контура применяется объемный резонатор, в который и помещается исследуемый образец. [c.228]

    Возможно применение предварительного усиления СВЧ-колебаний специальными устройствами (например, лампой бегущей волны). Модуляция магнитного поля на глубину, меньшую ширины резонансной линии, обычно производится с высокой частотой (100 кГц — 1 МГц). Основное усиление производится избирательным усилителем, настроенным " на эту частоту. Это позволяет избавляться от интенсивных низкочастотных шумов кристаллического детектора. Требования, предъявляемые кэкс-перилментальным установкам для наблюдения электронного резонанса, полностью аналогичны требованиям, предъявляемым к ядер-норезонансным спектрометрам. [c.229]

    Применение импульсной фурье-спектроскопии ЯМР особенно эффективно при изучении спектров изотопов с низким естественным содержанием. В настоящее время стала рутинной регистрация спектров ЯМР С, распространяется спектроскопия ядер Ю, 9р, Р. Высокочувствительные импульсные фурье-спектрометры со сверхпроводящими селеноидами позволяют регистрировать спектры ЯМР практически всех изотопов с магнитными ядрами. Метод широко используется для измерения времени релаксации, появилась возможность получения спектров высокого разрешения твердых тел, проводить дифференциальную регистрацию, изучать сложные мультиплетные резонансы и т. д. [c.46]

    Н шкала ХС формируется из частот для свободных ядер протонов Н+ и ядер атома водорода, входящих в какую-либо молекулу. Первая частота — это обычная частота Лармора прецессии ядер Н+ в магнитном поле Яо VG= (11н//й)Яо, где 11н — магнитный момент ядра атома водорода / — спин ядра Й — постоянная Планка. В поле Но= Т значение го = 42,578 мГц. Это и есть первая фундаментальная частота в шкале химических сдвигов — частота свободных ядер. Важным моментом является то, что она зависит от напряженности магнитного поля и не зависит от материала, в котором находятся ядра. Однако исследования сигналов ЯМР показали, что частоты, на которых происходит поглощение, для одного и того же ядра зависят от того, в какой молекуле оно находится и от его месторасположения в ней. Разница частот обычно незначительна по сравнению с величиной резонансной частоты, но тем не менее при современной разрешающей способности спектрометров ее можно обнаружить. Наблюдение резонанса ядер протонов, входящих в молекулу, при частоте, отличной от резонансной частоты ядер Н+, обусловлено экранированием ядра от внешнего поля. Физический смысл экрапировапия обычно связывают с правилом Ленца, по которому внешнее магнитное поле возбуждает ток, магнитное поле которого компенсирует приложенное поле. Таким образом, эффективное поле, действующее на ядро, равно [c.68]

    Согласно уравнению (А.37), при измерении ядериого резонанса можно работать при постоянной напряжеииостн магнитного поля Яо, изменяя частоту электромагнитного поля. Прн напряжеииостн внешнего магнитного поли //д=10 Гс частоты излучения, поглощаемого при явлении резонанса, находятся в области 1—50 МГц (радиоволновая область). Максимальное разрешение сои ременных высокоэффективных приборов ЯМР-спектрометров лежит между 0,1 и 0,2 Гц. Нижней границей обнаружения резонанса считают 10 магнитиыч ядер. [c.138]

    В молекулах внешнее магнитное поле Я, индухщрует небольшие дополнительные поля, обусловленные диполь-дипольным взаимодействием, экранированием электронов, электронными спин-спиновыми взаимодействиями. В жидкостях вследствие броуновского движения магнитные поля, вызванные диполь-дипольным взаимодействием, усредняются до нуля, и условие резонанса зависит только от локальных магнитных полей, связанных со структурой молекулы. Эти дополнительные поля в 10 раз слабее по напряженности приложенного магнитного поля Яд, поэтому спектрометр ЯМР для исследования жидкостей и газов должен обладать высокой разрешающей способностью. Условия резонанса для отдельных ядер существенно различны, поэтому существует спекфоскопия ЯМР высокого разрешения для ядер Н, С, р, Р. [c.353]

    Магнитное поле электромагнита модулируется при низкой частоте с помощью катушек, намотанных на резонатор или на полюсные наконечники электромагнита. Для калибровки маг нитного поля с точностью одной части на сто тысяч применяется ядерный датчик, использующий резонанс от ядер Н или У . Частота клистрона измеряется волномером с точностью одной части на десять тысяч. Для точных сравнительных измерений величин -фактора используются соединения с точно известным -фактором, дающие узкие линии ЭПР, например 1,1-дифенил-2-пик-рилгидразил. Чувствительность спектрометра такова, что он дает возможность обнаружить приблизительно 10" АЯ молей спинов, где АЯ — ширина линии ЭПР в гауссах. [c.67]

    Ядерный магнитный двойной резонанс (ЯМДР) состоит в воздействии на исследуемый образец, помещенный в магнитное поле спектрометра, одновременно двух высокочастотных нолей в области резонанса магнитных ядер. Этот сравнительно новый метод исследования быстро получил широкое распространение и наряду с монорезонансом применяется как для структурных и физико-химических исследований, так и при изучении релаксационных процессов. В обзорах [17, 57] описано применение ЯМДР для исследования органических соединений. В настоящем разделе рассматриваются элементарные основы теории ЯМДР и вытекающие отсюда возможности использования этого метода, а также пути практического осуществления ЯМДР и методы расшифровки спектров, полученных с применением двойного резонанса. [c.188]

    Достижимое разрешение увеличивается с ростом силы магнитного поля, а следовательно, и частоты. Обычные самые дешевые спектрометры ЯМР высокого разрешения работают на частоте 60 МГц (Я= 1,409 Т для протонов), спектрометры более высокого класса — на 100 МГц (Я=2,350 Т), частота рекордных приборов может достигать 600 МГц (14,4 Т) . Рис. 13-5 иллюстрирует значительно лучшее разрешение спектрометра на 220 МГц по сравнению с прибором, работаюшим на 60 МГц. Во многих моделях спектрометров предусмотрена возможность работы на более низких частотах, чтобы величина магнитного поля соответствовала резонансу других ядер. В табл. 13-1 приведены частоты и другие данные, относящиеся к резонансу для ряда ядер с /= /2- [c.282]


Смотреть страницы где упоминается термин Спектрометры ядериого магнитного резонанса: [c.2]    [c.217]    [c.158]    [c.94]    [c.77]    [c.78]    [c.345]   
Биохимия Том 3 (1980) -- [ c.184 ]




ПОИСК







© 2025 chem21.info Реклама на сайте