Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутренние степень кристалличности полимера

    Внутреннее строение и физико-химические свойства полимеров. Свойства полимеров зависят от особенностей их внутреннего строения и в" первую очередь от вида структурной единицы полимера, степени полимеризации, строения цепей, а также от характера и интенсивности взаимодействия между ними. Структурные единицы, составляющие данный полимер, могут содержать полярные группировки атомов, что усиливает взаимное притяжение между цепями и, в частности, при наличии гидроксильных или имино-групп (ОН, МН) приводит к образованию между ними водородных связей. Структурные единицы могут содержать двойные связи, что облегчает образование химических связей между цепями. Наличие боковых ответвлений, их размеры и характер расположения вдоль цепи влияют на взаимодействие между цепями, а также на степень кристалличности и т. д. [c.566]


    Существенное влияние на внутренние напряжения оказывает степень кристалличности полимера [129], а также влажность окружающей среды [104, 117, 120, 130—132]. Например, в атмосфере 98—100%-ной влажности внутренние напряжения в поливинилхлориде падают до нуля. Эти изменения в данном случае необратимы, поскольку происходит отслаивание покрытия от подложки. Пластифицирующее действие воды было обнаружено также на покрытиях из поливинилового спирта, алкидных и эпоксидных смол и на эпоксидно-полиамидных покрытиях. [c.178]

    При выборе полимера для защитного покрытия необходимо учитывать, что долговечность покрытия обычно снижается с увеличением степени кристалличности полимера. Это объясняется наличием внутренних напряжений в кристаллической фазе, приводящих к ослаблению валентных связей. С увеличением степени кристалличности снижаются адгезия полимера к защищаемой поверхности и устойчивость к окислению. [c.176]

    Теплота плавления на моль мономерных звеньев АЯ представляет собой важную внутреннюю термодинамическую характеристику сегментов или звеньев кристаллического полимера. Ее не следует путать с теплотой плавления, или скрытым изменением энтальпии А// , получаемой при калориметрических измерениях. Последняя величина неизбежно обусловливается начальной степенью кристалличности системы. ДЯм всегда меньше АЯм, за исключением предельного случая полностью кристаллического полимера, когда эти две величины будут совпадать. [c.49]

    Значительный интерес представляет установление связи между степенью кристалличности полимеров и внутренними напряжениями в получаемых из них покрытиях. Внутренние напряжения обычно возникают уже в момент кристаллизации полимеров. Чем выше степень кристалличности, тем жестче полимер и тем выше внутренние напряжения в покрытии. [c.90]

    Для уменьшения внутренних растягивающих напряжений в различных материалах (стекле, металлах), в том числе и в полимерах, широко применяется отжиг т. е. выдержка готового изделия при повышенной температуре для ускорения релаксации напряжений. Отжиг, однако, иногда сопровождается увеличением степени кристалличности полимера и увеличением размеров его кристаллов, в результате чего сопротивляемость растрескиванию может не только не возрасти, но даже уменьшиться [c.208]

    Большое влияние на изменение свойств оказывают процессы релаксации и кристаллизации, которые не успевают завершиться в полимере в процессе формования и протекают в течение длительного времени даже при комнатной температуре. Ускорению этих процессов может содействовать обработка изделии при температурах несколько ниже температур плавления полимеров. При этом сохраняется ориентация макромолекул в изделии, созданная при переработке, и одновременно увеличивается прочность за счет изменения степени кристалличности полимера в изделии и снижения внутренних напряжений. [c.222]


    Для ориентированного состояния полимера характерно расположение большинства линейных макромолекул, кристаллитов и других более крупных структурных образований параллельно или почти параллельно оси волокна. Для полиэфирного волокна, кроме того, большое значение имеют вид и совершенство кристаллитов, степень кристалличности, уровень упорядоченности и величина внутренних напряя ений в аморфной фазе. [c.119]

    При изготовлении пленок прессованием (например, полиэтиленовые пленки) поверхностный слой может аморфизироваться в результате быстрого охлаждения расплава и, следовательно, отличаться по степени кристалличности и морфологии кристаллических образований от внутренних слоев пленки 2 -2° . Полиэтиленовые пленки 2 , полученные методом пневматического растяжения, и полиэтилентерефталатные пленки характеризуются постоянными значениями коэффициентов газопроницаемости в широком диапазоне толщин. В очень тонких пленках независимо от способа их получения структура полимера существенно изменяется, что соответственно влияет и на изменение коэффициента проницаемости. Так, Вит с сотр. исследуя растворимость газов в ориентированном полиэтилентерефталате, показали, что при толщине пленки в I мкм и менее структура пленки резко изменяется и коэффициент растворимости СОа в таких пленках значительно отличается от [c.239]

    Надмолекулярная структура в значительной мере определяет механические свойства полимерных материалов. Наиболее важными методами изучения процессов кристаллизации и ориентации в полимерах являются рентгенография (электронография), электронная микроскопия, методы двойного лучепреломления и определения плотности и удельного объема полимеров. При измерении степени кристалличности наряду с рентгенографией применяют спектроскопию ЯМР и с нарушенным полным внутренним отражением. [c.346]

    Поскольку скорость кристаллизации в тонких частях изделия выше, степень кристалличности и плотность материала здесь увеличиваются быстрее, чем в толстых частях, и в форме создается перепад гидростатических давлений, вызывающий перетекание некоторого количества полимера нз толстой части изделия в тонкую. Это внутреннее течение и различия в степени кристалличности и являются основными причинами неоднородности усадки. [c.421]

    Если бы усадка была одинаковой по всем направлениям, то изделие и форма были бы геометрически подобны, а усадку можно было бы полностью скомпенсировать за счет соответствующего увеличения размеров формы. В действительности этот способ неприменим, поскольку во всех (или почти во всех) отливаемых изделиях усадка неоднородна. Неоднородность усадки возникает из-за наличия продольной ориентации и неравномерного-охлаждения изделия, толстые части которого охлаждаются значительно медленнее тонких. Различие в скорости кристаллизации приводит к формированию разных надмолекулярных структур и к разной степени кристалличности. Поскольку скорость кристаллизации в тонких частях изделия выше, степень кристалличности и плотность материала в тонких частях увеличивается быстрее, и в форме создается перепад гидростатических давлений, вызывающий перетекание некоторого количества полимера из толстой части изделия в тонкую. Это внутреннее течение и различия в степени кристалличности и являются основными причинами неоднородности усадки. [c.439]

    В неориентированном кристаллическом полимере степень кристалличности высока, но кристаллиты ориентированы преимущественно случайным образом, как показано на рис. 29-4. Для таких полимеров часто характерна сравнительно четкая температура плавления, соответствующая плавлению кристаллитов. При температурах выше эти полимеры аморфны и подвержены пластическому течению, что делает возможным их формование. При прочих равных условиях можно ожидать, что Т л будет выше для полимеров с жесткими цепями (высокие барьеры для внутреннего вращения), где Л5 (1, разд. 3-7,Б) плавления мала. [c.495]

    Релаксационное поведение частичнокристаллических полимеров осложнено главным образом влиянием кристаллических частей макромолекул на некристаллические (разд. 4.2). Источниками внутренних напряжений часто являются поверхностные дефекты (разд. 4.3.2), что обусловлено нахождением одной и той же молекулы в кристаллической и аморфной областях. В зависимости от деталей структуры подвижность участков молекул, сопряженных с кристаллическими областями, в большей или меньшей степени ограничена (разд. 4.1.6). Значительную информацию о подвижности этих участков можно получить при исследовании зависимости температуры стеклования, от степени кристалличности [58]. Частичная кристаллизация повышает температуру стеклования полистирола. Для полиэтилентерефталата и полипропилена на зависимости температуры стеклования от степени кристалличности при средних степенях кристалличности наблюдается максимум. Для полиоксипропилена температура стеклования практически не зависит от степени кристалличности. [c.463]


    Полученное полотно охлаждается прн помощи валков, внутрь которых подается вода. В зависимости от конструкции устройства процесс охлаждения может быть односторонним или двухсторонним. Прн производстве пленки или листов из полиэтилена, полипропилена и ряда других полимеров необходимо обеспечивать прижим пленки к поверхности охлаждаемого барабана или валка (см. раздел 5.4). Охлаждение полотна из кристаллизующихся полимеров следует проводить при равномерной температуре поверхности валка или барабана, поскольку от этого зависит однородность структуры и степень кристалличности. Для достижения этих условий на внутренней поверхности охлаждающих валков не должно быть ребер, а охлаждающая жидкость должна распределяться равномерно. [c.240]

    Исследована зависимость ИК-спектра полибутена-1 от степени кристалличности и стереорегулярности образца [1276]. В качестве полос кристалличности были выбраны полосы при 1208, 1098, 1059, 1028, 922, 849 и 816 см . Эти полосы исчезают в спектре расплава полимера или его раствора в сероуглероде. Существует линейная зависимость между удельным объемом полимера и отношением оптических плотностей этих полос к оптической плотности полосы при 1150 СМ (полоса при 1150 см выбрана в качестве внутреннего стандарта). От удельного объема полимера зависит также и интенсивность полосы при 1220 см , однако эта полоса сохраняется в спектре расплава или раствора [c.235]

    Различия в упорядоченности структурных элементов, обусловленные структурными превращениями, приводят к различию в плотностях, свободных энергиях и др. термодинамич. параметрах одного и того же по химич. составу и строению аморфного полимера. Однако полимер в А. с. всегда характеризуется меньшими значениями плотности и большими значениями свободной энергии, чем тот же полимер в кристаллич. состоянии. Необходимо также обратить внимание на значение особенностей полимеров в А. с. для понимания свойств кристаллич. полимеров. Последние всегда содержат в своем объеме разные нарушения дальнего порядка. К их числу относятся области, незакристаллизовавшие-ся из-за нарушения регулярности строения цепей или возникновения при кристаллизации внутренних напряжений, отставшие в кристаллизации области, к-рые по каким-либо причинам были до начала кристаллизации аморфного полимера в более разуцорядоченном состоянии, чем остальные. К числу таких нарушений относят также и закономерно возникающие нар5гшения порядка в расположении звеньев макромолекул в кристаллич. образованиях (участки макромолекул, осуществляющие складывание их при образовании простейших элементов кристаллич. структуры,— см. Надмолекулярные структуры. Кристаллическое состояние). Все эти нарушения дальнего порядка приводят к проявлению в свойствах кристаллич. полимеров определенных черт, характерных для полимеров в А. с. Это дало повод к развитию представлений о двухфазности кристаллич. полимеров и оценки соотношения кристаллич. и аморфных областей при помощи т. наз. степени кристалличности полимеров. Однако такое представление, позволяя формально описать поведение реальных [c.62]

    Различие между полимеризацией этилена и полимеризацией других а-олефинов заключается в возможности придания структурной регулярности ноли-а-олефинам. Поэтому катализатор Циглера может быть одинаково эффективен при нолимеризации этилена и высших а-олефинов, не являясь при этом лучшим катализатором для получения высоких выходов изотактических полимеров. Природа компонентов, их соотношение, способ приготовления и физическое состояние катализатора оказывают существенное влияние на свойства образующегося полимера. Например, при полил1еризации этилена соотношение компонентов и условия реакции определяют молекулярный вес полимера. Оба эти фактора наряду с молекулярным весом полимера и физическим состоянием катализатора определяют степень кристалличности полимера и относительные выходы изотактического и атактического продуктов. От соотношения комнонептов катализатора при полимеризации сопряженных диенов зависит получение , Агцис- или 1,4- гранс-конфигурации звеньев в полимере, в то время как природа компонентов определяет наличие внутренней или боковой ненасыщенности, т. е. наличие 1,4- или 1,2-звеньев мономера. Влияние катали- [c.104]

    Низкомолекулярные атактические фракции необходимо удалить из полимера, так как со временем они мигрлру от к поверхности изделий, делая их липкими на ош,упь. Стереоблокполимеры хорошо совмещаются с изотактическнм полипропиленом. В известной степени они действуют как внутренний пластификатор и снижают кристалличность полимера. Их удаляют из полимера полностью или хотя бы частично в зависимости от назначения изделия. Для некоторых целей (в частности, для получения высокопрочного волокна) требуется полипропилен, обладающий практически 100%-ной степенью изотактичиости. [c.50]

    Кун [74] применил этот метод для определения степени нитрования нитрата целлюлозы, а Мэйнард и Мошель [79] — для определения кристалличности полихлоропрена. Последние исследователи использовали внутренний эталон как меру толщины пленки, преодолев таким образом некоторые из трудностей, встречающихся при применении пленок для количественной работы. В качестве внутренного эталона для определения толщины пленки или общей концентрации полимера была использована валентная полоса С — Н-связи, лежащая около 3,4 мк. Для измерения толщин могут быть также использованы валентная полоса двойной связи С=С около 6,0 мк и деформационная полоса связи С — Н около 6,9 мк. Мэйнард и Мошель показали, что пропорциональность между интенсивностью полос при 12,8 и 10,5 мк чувствительна к степени кристалличности и температуре полимеризации. [c.274]

    На основании перечисленных наблюдений Эдлер [48] пришел к выводу, что для объяснения механизма образования полимерных кристаллов в рассмотренном случае необходимо привлечь представление об эпитаксиальном росте. Не следует ли отсюда, что протекание реакции облегчается на каких-то внутренних поверхностях (дефектных участках) кристаллов, когда твердая фаза играет роль некоторого субстрата, на котором происходит рост кристалла По-видимому, наиболее убедительным подтверждением механизма эпитаксиального роста является хорошо известное исследование процесса твердофазной полимеризации е-аминокапроновой кислоты [17], при котором было обнаружено явление переноса мономера в паровой фазе. Следует заметить, что мономеры, способные к твердо-4)азной полимеризации, как правило, легко полимеризуются и не в твердой фазе. Это в полной мере относится как к триоксану, так и к акриламиду [49], из которого образуется некристаллизующийся полимер, поскольку часто оба эти мономера легко сублимируются. С этой точки зрения, по-видимому, не существует значительных различий в механизмах твердофазной полимеризации и полимеризации в жидкой или газовой фазе. Тот факт, что проведение реакции полимеризации триоксана вблизи температуры плавления, когда нарушения решетки проявляются заведомо значительно сильнее, чем при низких температурах, тем не менее делает возможным получение полимеров с высокой степенью кристалличности, свидетельствует в пользу этих представлений. Очевидно, эта модель сохранила бы свою силу даже в том случае, если бы удалось получить кристаллический стереорегулярный полимер на основе акрил амида. [c.292]

    Диффузия паров воды через полимерные стекла иногда не подчиняется закону Фика даже с учетом концентрационной зависимости коэфф. D. Эти случаи наз. аномальной или нефиковской диффузией. Коэфф. В. при аномальной диффузии зависит от времени и напряженного состояния полимера. Достаточно ясных представлений о причинах аномальных явлений при диффузии в застеклованных полимерах пока пет. Предполагают, что изменение коэфф. В. во времени может быть вызвано медленным изменением структуры полимера или внутренними напряжениями, возникающими при набухании на одной из сторон мембраны и влияющими на свойства другой стороны. Коэфф. В. уменьшается с понижением гидрофильпости, увеличением степени кристалличности и числа поперечных связей в полимере. Темп-рная зависимость коэфф. В. W) выражается ур-нием вида [c.245]

    Диффузия малых молекул в высокополимерах определяется растворимостью и подвижностью в полимерной фазе. В случае полукристаллических полимеров растворимость этих молекул может быть высокой в аморфной области, но ничтожной в кристаллитах. Весьма интересным применением этого подхода может служить оценка степени кристалличности целлюлозы методом изотопного обмена гидроксильного водорода с тяжелой водой. Было обнаружено, что обмен может происходить только в аморфной части полимера и на поверхности кристаллитов, но не в их объеме [44]. Другим примером является исследование изотопного обмена сухого инсулина при этом было найдено, что 45 из всех обменоспособных водородов значительно лабильней, чем остальные 46. Этот факт объясняли образованием водородных связей в той части полипептидной цепи, которая свернута в спираль [65]. Прежде чем использовать полимеры, часто бывает необходимо удалить все реагирующие вещества из их высококристаллической фазы. Наглядным примером служит дакрон (полиэтилентерефталат), весьма устойчивый к гидролизу, так как из-за его плотной кристаллической упаковки молекулы воды не могут проникнуть к внутренним лабильным эфирным связям. В случае полиэтилена, подвергнутого действию ионизирующего излучения, было найдено, что кислород может диффундировать внутрь полимера и воздействовать на радикалы, захваченные микрокристаллитами, но этот процесс протекает очень медленно, в течение тысяч часов [69]. [c.270]

    Миграция — сложный многостадийный процесс, продолжительность к-рого может составлять от нескольких часов до многих месяцев, а иногда и лет. Скорость движения мигрирующих веществ из материала к границе его раздела со средой определяется скоростью диффузии этих веществ в материале, зависящей от степени сродства диффундирующего вещества и полимера, от степени кристалличности последнего и др. Процесс может существенно осложняться вследствие встречной диффузии среды внутрь материала, отличия свойств поверхностного слоя исследуемого изделия (или образца) от свойств его внутренних слоев, существования на поверхности изделия пограничного диффузионного слоя контактирующей с полимером среды, концентрация мигрирующих веществ в к-ром выше, чем в объеме этой среды. Сложность санитарно-химич. исследований связана также и с тем, что перед их началом не всегда бывает известен состав мигрируюпщх токсичных соединений и, кроме того, в нек-рых случаях отсутствуют чувствительные и селективные методы их определения. [c.179]

    Хорошая закалка возможна только яри ебольщой толщине изделий — не более 3—4 мм. Фторопласт-3 имеет очень малый коэффициент теплопроводности, поэтому внутренние слои изделия не могут охладиться достаточно быстро и приобретают более высокую степень кристалличности. Поскольку последняя непосредственно связана с повышением плотности полимера, в толстостенных изделиях всегда образуются внутренние трещины, поэтому методом лрессования с закалкой толстостенные изделия изготовлять нельзя. [c.122]

    Динамический модуль, полученный по совпадающим по фазе динамическим измерениям, зависит от степени кристалличности при температуре выше температуры самого низкого перехода он обычно возрастает с увеличением кристалличности образца, как это показано на рис. 5 для ПТФЭ. Несовпадающий по фазе параметр механических потерь, называемый дисперсией механических потерь, или внутренним затуханием, или же внутренним трением (по другой номенклатуре), возрастает с уменьшением кристалличности, если переход или релаксация вызваны молекулярным движением в аморфной области. И наоборот, внутреннее затухание усиливается с увеличением кристалличности в температурной области кристаллического перехода. Из спектра модуля мы видим, как жесткость полимера меняется с температурой. Кривая внутреннего затухания вместе с кривой модуля говорит о том, является ли полимер аморф" ным или же кристаллическим, и дает возможность предполагать возможные молекулярные механизмы, управляющие различными переходами. Примеры использования динамических механических данных были продемонстрированы в предыдущих разделах. [c.421]

    Термообработка. Технологические режимы термообработки покрытий наименее изучены. Эта операция проводится не всегда, часто ограничиваются естественным охлаждением изделия с нанесенным полимерным слоем. Выбор способа термообработки определяется природой применяемого полимера [57—59]. Если исключить влияние среды, то основным параметром процесса является скорость охлаждения расплава. В случае аморфных полимеров изделия с покрытием (а иногда вместе с нагревательным устройством) охлаждают медленно, в случае кристаллизующихся — быстро. Медленное охлаждение расплава облегчает протекание релаксационных процессов в полимере, что позволяет получать покрытия с меньшим уровнем остаточных напряжений. Однако в том случае, когда при таком охлаждении происходит интенсивная кристаллизация полимера, покрытия оказываются более напряженными. Быстрое охлаждение расплава кристаллизующихся полимеров может приводить к их аморфизации, что позволяет получать эластичные малонапряженные пленки. В этом случае целесообразно проводить дополнительный прогрев изделия с покрытием. Дополнительный прогрев приводит к увеличению степени кристалличности материала покрытия и росту внутренних напряжений, но га- [c.158]

    Тодобным образом в высококристаллических полимерах аморфные сегменты между кристаллитами слишком коротки, чтобы допустить какие-либо движения, описываемые с помощью мономерного коэффициента трения. Однако при температурах настолько ниже точки размягчения, что степень кристалличности достигает максимального значения, согласующегося со стерическими ограничениями, так что дальнейшее понижение температуры не сопровождается ростом кристаллов и изменением внутренней структуры, можно предположить, что времена релаксации, соответствующие тем движениям, которые остаются, имеют одну и ту же температурную зависимость. Применение приведенных переменных на этой основе оказалось успешным для ряда высококристаллических полимеров, включающих полиэтилен высокой плотности [87], который приведен в качестве примера в гл. 2 (кривые V//). Температурная зависимость ат вновь следует [c.273]

    При хтруктурировании полиэтилена существенно изменяется его структура уменьшается степень кристалличности, изменяется морфология надмолекулярных структур, образуются мостичные связи, характер которых зависит от условий проведения процесса [67, 107—109]. Эти изменения в структуре положительно сказы-паются на свойствах полиэтилена и получаемых из него покрытий. В частности, снижаются модуль упругости полимера и внутренние напряжения, увеличиваются прочность покрытий на разрыв, относительное удлинение и адгезия. [c.55]

    Это не распространяется, однако, на все кристаллические полимеры. Так, при медленном охлаждении (отжиге) фторопласта-3, высококристаллических полиолефинов (ПЭНД и ПЭСД), несмотря на увеличение степени кристалличности, внутренние напряжения уменьшаются [69, 168, 174]. Такое явление объясняется преобладаюш,им влиянием ориентационных процессов в пленке (пластическая, эластическая, структурная [c.90]

    Проведенные эксперименты показали, что значение максимально достижимой степени вытяжки может быть изменено посредством специальной температурной обработки исходного материала. К сожалению, это невозможно при экструзии, поскольку обработке следует подвергать толстые слои материала. Но низкая теплопроводность его резко ограничивает скорости охлаждения расплавленного полимера. Для достижения гомогенности расплавленной заготовки и во избежание возникновения пустот и внутренних напряжений вследствие тепловых эффектов необходимо в общем случае охлаждать отливку со скоростью не выше 1 град/мин. Это приводит к возникновению грубой несферолитной морфологии с высокой степенью кристалличности, что крайне нежелательно. [c.30]

    Из факторов, относяш,ихся к самим полимерам, на растрескивание влияют следуюш,ие Наличие полимергомологов, что приводит к разной локальной степени набухания или растворения в полимере, а это, в свою очередь, обусловливает концентрацию напряжений и образование треш ин. В кристаллических полимерах действие растворителя локализуется прежде всего по границам сфероли-тов, а иногда и внутри сферолитов между лучами. Это связано с тем, что при кристаллизации в сферолитах упорядочиваются структурные единицы одинакового строения, например в линейных полимерах — линейные молекулы. В этом случае молекулы, содержаш,ие разветвления и посторонние группы, возникающие в результате окисления и других процессов, автоматически выталкиваются из кристаллов и образуют аморфную или менее упорядоченную фазу между сферолитами. Таким образом происходит концентрирование дефектного материала, по которому начинается процесс разрушения. Неодинаковая скорость воздействия на кристаллические полимеры физически или химически агрессивных сред наглядно проявляется при травлении полимеров аналогично металлам. Опыты по травлению показывают, например, что при действии на полиэтилен концентрированной HNO3 с большей скоростью и в первую очередь растворяется дефектный менее кристалличный материал. В связи с этим сопротивляемость растрескиванию увеличивается при сужении кривой распределения за счет низкомолекулярной части и при увеличении молекулярного веса полимера. Аналогичные данные имеются и для поликарбоната Склонность к растрескиванию уменьшается с уменьшением внешних и внутренних напряжений, а также с увеличением степени кристалличности, т. е. с ростом плотности. Последнее наблюдалось на полиамидах в кислотах а также на полиэтилене в растворе ПАВ Однако одновременное увеличение набухания с ростом степени кристалличности, например в системе фторопласт — керосин приводит к уменьшению долговечности. Сопротивляемость растрескиванию снижается с ростом [c.77]

    При переработке полимеров обычно имеют место нестационарные условия теплопередачи и скорость охлаждения изменяется по толщине изделия. Поэтому в большинстве случаев образуются, неоднород1 ые по размерам кристаллические структуры (более мелкие в поверхисстиых слоях) и полимер имеет меньшую степень кристалличности. У таких полимеров, как поликарбонат, полиамид, полиэтилентерефталат, поверхностный слой имеет аморфное строение, а во внутренних слоях образуются кристаллические структуры больших размеров. [c.27]

    Для переработки полиамидов в большинстве случаев применяют литьевые машины с предварительной пластикацией. Необходимость применения предварительной пластикации диктуется специфичностью свойств полиамидоз низкой теплопроводностью, высокой температурой плавления, узким интервалом температур плавления и разложения. В предпластикаторе происходит гомогенизация материала, и в литьевую форму впрыскивается расплав полимера с одинаковой в любой точке литьевой массы температурой, вязкостью и заданным молекулярным весом. Вследствие этого отливаемые изделия имеют более высокую степень кристалличности, меньшие внутренние напряжения, повышенную механическую прочность. [c.241]

    В предпластикаторе происходит гомогенизация материала, и в литьевук> форму впрыскивается расплав полимера с одинаковыми в любой точке литьевой массы температурой, вязкостью и молекулярным весом. Вследствие этого отливаемые изделия имеют более высокую степень кристалличности, меньшие внутренние напряжения, повышенную механическую прочность. [c.281]

    С увеличением степени кристалличности обычно возрастает прочность, но одновременно повышаются и внутренние напряжения в материале, снижающие его прочность. Поэтому при использовании крнсталлическт1х полимеров как пленкообразователет следует стремиться к уменьшению степени кристалличности и размеров кристаллических образований, например, путем закалки. [c.34]


Смотреть страницы где упоминается термин Внутренние степень кристалличности полимера: [c.225]    [c.243]    [c.560]    [c.188]    [c.552]    [c.179]    [c.156]    [c.194]    [c.277]    [c.18]    [c.246]    [c.18]   
Основы адгезии полимеров (1974) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности

Кристалличность степень кристалличности

Полимеры внутренняя

Степень кристалличности

Степень кристалличности полимер



© 2025 chem21.info Реклама на сайте