Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород перенос дислокационный

    Изменение образца при приготовлении. При уменьшении толщины препарата (шлифовки, полировки и т. п.) могут быть частично релаксированы дислокации, поэтому дислокационная структура тонких и толстых объектов часто бывает различной (в процессе приготовления пластинок из стали перемещается, например, до 20% дислокаций). Нагревание образца в процессе полировки часто приводит к определенным фазовым превращениям вещества в поверхностном слое (отжиг части точечных дефектов, образование гидридов в токе водорода и т. п.). Могут происходить различные изменения в пленке образца и при переносе ее из камеры предварительного приготовления в вакуумную систему, и при пребывании в условиях глубокого вакуума. [c.144]


    Водород способен накапливаться и на границах между матрицей и выделениями, особенно если последние некогерентны. Наличие водорода может уменьшать прочность этой границы раздела, облегчая тем самым зарождение растрескивания. Если же количество водорода достаточно велико, то он может способствовать росту полостей на границе раздела за счет повышения давления Нг. Последний случай возможен при дислокационном переносе водорода, если он быстрее доставляется к границам выделений, чем уходит от них путем диффузии. С такой точки зрения интерпретировались случаи вязкого разрушения, ускоренного присутствием водорода [72, 74, 124]. При этом не уточнялось, влияет ли водород на зарождение или на рост полостей. Однако наблюдающееся во многих случаях уменьшение размеров лунок на поверхностях разрушения в водороде [74, 84, 124] позволяет предположить, что присутствие водорода отражается главным образом на зарождении полостей. Пример таких результатов показан на рис. 54. Эффекты, связанные с накоплением водорода на частицах предполагались и в ряде других случаев [63, 334, 335]. Поэтому важно было бы продолжить исследования влияния типа и ориентации включений в ферритных сталях [26, 59]. Число работ по этой теме возрастает, поскольку в материалах, применяемых на практике, желательно добиться вязкого типа разрушения. [c.137]

    Что касается ферритных микроструктур, то здесь имеется много важных аналогий [39] в поведении нелегированных и низколегированных, а также аустенитных нержавеющих сталей при экспозиции в водороде, включая наблюдения вязкого разрушения с уменьшением относительного сужения [24, 40]. Встречаются и многочисленные различия. Однако имеющееся сходство позволяет предположить, что в ферритных сталях протекают процессы, аналогичные описанным при обсуждении аустенитных сталей. Дальнейшее исследование этого вопроса имеет большое значение. Диффузия в о. ц. к. решетке протекает гораздо быстрее, чем в нержавеющих сталях, однако только весьма тщательные эксперименты могут установить, насколько здесь действительно необходимо привлекать представление о дислокационном переносе водорода. [c.143]

    Мы полагаем, что в действительности важны обе эти возможности [68]. Значение характера скольжения обусловлено наличием переноса водорода по дислокациям. Если дислокационный перенос сопровождается разрезанием упрочняющих выделений, то скольжение является сильно планарным и на границах может накопиться значительное количество водорода. Последующее влияние этого водорода будет зависеть от характера выделений на границах, поскольку эти выделения будут служить центрами накопления водорода и, следовательно, зародышами разрушения [173. 328, 353]. Таким образом, мы считаем, что конкуренция двух процессов, обусловленных характером внутренности зерна и зернограничными выделениями соответственно, просто отражает две стороны одного и того же явления, при условии, что в нем действительно принимает участие водород. Следовательно, мы, присоединяемся к тем исследователям, которые в большинстве случаев (по крайней мере отчасти) связывают поведение алюминия при КР с водородом [169—173, 179, 183, 328, 329, 354—358]. [c.144]


    В более крупном масштабе водород диффундирует к местам максимального трехосного напряжения вблизи вершин трещин [318, 319]. На рис. 51 показано, что в условиях пластического раскрытия трещины [320] такие напряжения возникают очень близко от вершины. Во всей пластической зоне у вершпиы трещины водород может накапливаться в любом из мест, изображенных на рис. 50. Перенос водорода в пластической зоне вполне может происходить преимущественно путем диффузии, особенно в сталях [318], поскольку размеры таких зон часто малы в условиях роста трещин при высоких уровнях прочности (см. значения /(1кр на рис. 7). Если бы в сталях преобладал перенос путем решеточной диффузии, то не следовало бы ожидать и существования корреляции между типом скольжения и степенью водородного охрупчивания, хотя согласно имеющимся теперь данным нельзя исключать и возможность дислокационного переноса водорода. В других материалах, где коэффициенты диффузии водорода малы, дислокационный транспорт особенно вероятен. [c.131]

    Многие исследователи приходили к выводу, что в их экспериментах имеет место дислокационный износ водорода. Так полагал Бастиен в случае мягкой стали [313], и так же считали авторы многочисленных работ, выполненных на аустенитной не-зжавеющей стали [39, 72, 84, 100, 124], на никеле и его сплавах 108, 238, 253, 259, 293, 315] и на ряде других сплавов, включая алюминиевые [68]. Предполагался такой механизм и в случае титановых сплавов [220], что особенно важно, учитывая сообщения о том, что в этих сплавах растрескивание протекает быстрее, чем диффузия водорода [296]. С представлениями о дислокационном транспорте согласуются и данные о формировании гидридов Ti в условиях деформации, поскольку гидриды чаще образуются в областях скольжения, а не беспорядочно во всей матрице [224, 226, 316]. Выполненные недавно количественные оценки [314, 317] показывают, что перенос водорода может ускоряться в 10 —10 раз и что границы зерен не играют роли существенных барьеров при дислокационном транспорте, поскольку времена захвата и освобождения имеют порядок микросекунд. Последнее согласуется с экспериментальными данными [39, 72, 237, 315]. [c.130]

    Выше была описана корреляция характера скольжения и склонности к индуцированному внешней средой растрескиванию в этих сплавах, и по крайней мере вероятно, что эта корреляция обуслов лена рассмотренными ранее эффектами, связанными с дислокационным переносом водорода. Говоря о поведении таких сплавов, необходимо учитывать и наличие гидридов некоторые авторы обсуждали влияние гидридов на характер разрушения — здесь следует выделить работы Скалли и др. [231, 338]. В пользу наличия эффектов дислокационного транспорта могут свидетельствовать образование гидридов в полосах скольжения [222, 224, 316, [c.141]

    Индуцированное водородом разрушение сплавов титана (включающее, как показывают результаты Нельсона [209] и Грина [179], и возможные многочисленные случаи КР) можно было бы объяснить в терминах относительного количества водорода, взаимодействующего со сплавом. Например, исходя из низкой фугитив-ности водорода (см. рис. 34), следует ожидать относительно малых его концентраций в условиях испытаний на КР. Малым, учитывая обычные значения растворимостей [224], должен быть и уровень растворенного водорода. Охрупчивание в условиях медленной деформации при низких уровнях [Н] [339] может протекать посредством дислокационного переноса водорода [342] (зависящего от характера скольжения) и индуцированного деформацией образования гидридов на полосах скольжения. Последующее разрушение может происходить в результате скола гидридов. В то же время при высоких уровнях [Н], приводящих к интенсивному предварительному формированию гидридов, характер разрушения будет другим [221], скорее всего, таким, как при больших скоростях деформации. Дальнейшее исследование причин такого различного характера разрушения титановых сплавов [302] должно охватывать как сложные эффекты образования гидридов [224, 226], так и вопрос о положении водорода в решетках сплавов [343]. [c.142]

    В области дислокационного транспорта Джонсон и Хирт [430] продемонстрировали, что взаимная аннигиляция переносящих водород дислокаций не может сама по себе привести к локальному обогащению водородом этот процесс не обсуждался в прежних работах [311—315]. Однако, как теперь пока-,зали Дженсен и Тиен [431], здесь важным моментом является существование энергии связи водорода с местами его накопления, такими как включения. Учет подобной энергии в теории Джонсона—Хирта дает очень сильный эффект накопления водорода, а если исключить энергию связи из модели Тиена и др. [314, 432], то существенного накопления водорода не получается. Поскольку в общем случае установлено, что такие металлургические особенности, как частицы и границы зерен, обладают подобной энергией связи [433, 434], то можно заключить, что обе имеющиеся работы, посвященные транспорту, [314, 430], могут предсказать накопление водорода на этих особенностях. Из экспериментальных данных по-прежнему следует [429, 436—438], что дислокационный транспорт имеет место на практике. С другой стороны, ряд авторов [421, 424, 439— 441] постепенно приходит к убеждению, что такой механизм переноса играет, по-видимому ие настолько центральную роль, как это было описано в тексте. [c.149]


Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.13 , c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте