Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородное охрупчивание

    Усилению процесса углекислотной коррозии способствует наличие в водном конденсате низкомолекулярных карбоновых кислот — муравьиной, уксусной, пропионо-вой, масляной. Общая концентрация органических кислот обычно не превышает 100—150 мг/л, в некоторых случаях доходит до 500 мг/л [36], причем основную долю от 50 до 90% от суммы кислот — составляет уксусная кислота. Углекислотная коррозия, в отличие от сероводородной не сопровождается водородным охрупчиванием стали. Так, в условиях воздействия уксусной кислоты, взятой в количестве до 500 мг/л, и парциального давления СОг в пределах 1—12 МПа при температуре 40-- [c.34]


    Водородное охрупчивание в условиях статического нагружения металла приводит к снижению его длительной прочности. Это явление называют статической водородной усталостью или при наводороживании в сероводородсодержащих средах— сульфидным растрескиванием. [c.21]

    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]

    От состава и структуры сплава зависит прочность, а от ее величины — склонность к водородному охрупчиванию. Легирующие элементы изменяют фазовый состав и структуру сплавов, от которых зависят возможность зарождения трещин и скорость их распространения. Увеличение размера зерна металла повышает склонность к водородному охрупчиванию, так как при этом облегчается сток дислокаций. [c.23]

    Таким образом, водородное охрупчивание усиливается с увеличением содержания никеля Ь сплавах. Охрупчивание хромоникелевых материалов под действием водорода соответствует снижению межкристаллической прочности, что является общим для водородной хрупкости всех материалов. [c.268]


    Устранение склонности к водородному охрупчиванию и сульфидному растрескиванию, легированием различными элементами не всегда дает положительные результаты. Это может быть связано с тем, что чувствительность сталей к водородному охрупчиванию в сильной степени зависит от металлургических факторов. Поэтому часто наблюдается различная склонность к водородному охрупчиванию сталей, даже близких по химическому составу. [c.23]

    Установлено, что коррозия и водородное охрупчивание промыслового оборудования протекают очень интенсивно при наличии влаги — по механизму электрохимической коррозии. Необходимым условием наводороживания стали при электрохимической коррозии является выделение водорода — водородная деполяризация. Термодинамическая возможность этого процесса определяется соотношением величин обратимых потенциалов железа и водородного электрода, т. е. необходимо соблюдение следующей зависимости  [c.21]

    Сероводород обладает уникальными агрессивными свойствами и вызывает коррозионные повреждения оборудования В результате электрохимической коррозии и водородного охрупчивания. Растворяясь в воде, он диссоциирует как слабая кислота на ионы [c.16]

    Во всех этих случаях растрескивание вызывают атомы водорода, проникающие внутрь металла либо в результате коррозионной реакции, либо при катодной поляризации [52]. Сталь, содержащая водород в междоузлиях кристаллической решетки, не всегда разрушается. Она почти всегда теряет пластичность (водородное охрупчивание), но растрескивание обычно происходит только при одновременном воздействии высокого приложенного извне или остаточного растягивающего напряжения. Разрушения такого типа называют водородным растрескиванием под напряжением (или просто водородным растрескиванием). Трещины в основном транскристаллитные. В мартенситной структуре они могут проходить по бывшим границам зерен аустенита [52]. [c.149]

    Заменять аустенитные сплавы на ферритные (например, марки 430 или низкоуглеродистую сталь с Сг и Мо — см. разд. 18,2). Однако ферритные сплавы могут подвергаться водородному охрупчиванию и вспучиванию в некоторых средах при контакте о более электроотрицательными металлами. [c.324]

    Конструкционные материалы должны обладать необходимым сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур и давлений, высокой коррозионной стойкостью, в том числе стойкостью к водородному охрупчиванию, коррозионному растрескиванию и другим специфическим видам коррозионного разрушения, проявляющимся в условиях воздействия нефтегазовых сред. [c.2]

    Выбор химического состава для повышения стойкости стали против водородного охрупчивания и сульфидного растрескивания весьма сложная задача, так как к стали предъявляется целый комплекс требований, включающий [c.23]

    Большая часть повреждений оборудования и трубопроводов бывает вызвана, как правило, несколькими факторами, среди которых один может являться реперным. При этом отсутствие воздействия на конструкцию определенных факторов часто играет не менее важную роль, чем его присутствие. При выявлении реперных факторов и оценке их значимости необходимо использовать наиболее полную информацию, получаемую из всех доступных источников. Лишь при таком подходе удается установить основные причины разрушения объекта коррозию (сероводородное растрескивание, водородное расслоение и другие виды, согласно [104, 105]), усталость, водородное охрупчивание, перегрузку, износ, эрозию, перегрев, дефекты изготовления или монтажа, отклонения от технических условий на материал объекта, несовершенство конструкции, отклонения от проектных условий эксплуатации (несоответствие состава, температуры и влажности среды непредвиденные нагрузки, неэффективные противокоррозионные мероприятия) и т. п. [c.160]

    Коррозионное растрескивание часто усилипается при наводо-роживании металла. Водород, сегрегируя в областях максимальной механической напряженности, создает дополнительные напряжения в металле. Исследования Л. А. Плавич высокопрочных сталей в равнопрочном состоянии показали, что решающим фактором, определяющим склонность сталей к водородному охрупчиванию, является характер тонкого (дислокационного) строения, [c.334]

    Механизм сероводородной коррозии Сероводород обладает уникальными агрессивными свойствами и вызывает коррозионные повреждения оборудования в результате электрохимической коррозии и водородного охрупчивания. Растворяясь в воде, он диссоциирует как слабая кислота на ионы н,8 Н5- + Н+ 5 - + 2Н+. [c.16]

    Агент, ускоряющий коррозионное разрушение бурового оборудования и инструмента,— это сероводород, который попадает в растворы при разбуривании сероводородсодержащих газовых месторождений. Причиной разрущения стального оборудования в присутствии НгЗ является либо коррозионное растрескивание под напряжением, либо водородное охрупчивание, либо комплексное их влияние. [c.105]

    С растворимостью газов в твердых металлах, особенно при повышенных температурах и давлениях, связана их газопроницаемость, что приходится учитывать при изготовлении соответствующих аппаратов. Известно негативное влияние водорода на железные сплавы — так называемое водородное охрупчивание стали. [c.233]

    На противоизносные свойства присадок оказывает влияние и вода, накапливающаяся в маслах с присадками при длительном хранении или эксплуатации [139., 140]. Наиболее стабильны в присутствии воды серусодержащие присадки ОТП, Л3-23к, АБС и ДФ-11. Наличие воды в масле с присадками приводит к снижению нагрузки сваривания, что связано с так называемым водородным охрупчиванием поверхностей трения [141, с. 111]. [c.134]


    Коррозия металлических сооружений причиняет огромный ущерб всем отраслям (народного хозяйства. Особенно велики потери в результате коррозии нефте-и газопромыслового оборудова ия, что связано с наличием высокоагрессивных комшонентов в рабочих средах и другими особенностями работы оборудования. Долговечность и (надежность работы его во многом зависят от технико-экономической характеристики конструкцион ного материала для нефтегазодобывающего оборудования, к которому предъявляют чрезвычайно высо кие требования он должен обладать сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур, высокой коррозионной стойкостью, стойкостью против водородного охрупчивания, коррози-о нного растрескивания и др. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, что усложняет транспортирование оборудования, увеличение глубин скважин и большие габариты оборудоваиия требуют подъемных механизмов большой мощности, поэтому желательно использование конструкционных материалов, позволяющих снизить массу конструкций. Конструкционные материалы должны быть технологичны и едефицитны. [c.3]

    Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (РеМп)8, показывают, что НаЗ, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % 8, но только на тех участках, где поступление На8 идет в результате растворения включений [39]. Включе-ння игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40]. [c.125]

    Умеренная перезащита стальной конструкции обычно не приносит вреда. Основными недостатками при этом являются потери электроэнергии и возрастающий расход вспомогательных анодов. При сильной перезащищенности возникает дополнительный ущерб в случае, если на защищаемой поверхности выделяется так много водорода, что это вызывает либо вспучивание или отслаивание органических покрытий, либо водородное охрупчивание стали (потерю пластичности в результате абсорбции водорода), либо растрескивание под действием водорода (см. разд. 7.4). Разрушение стали в результате абсорбции водорода, по существу, близко к разрушениям, происходящим в сульфидсодержащих средах [20] (см. разд. 4.5). [c.224]

    Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин [c.17]

    В случае неингибированной среды NA E величины критериев соответствуют расчетным данным теории замедленной рекомбинации, то есть происходит активный разряд ионов водорода на поверхности металла, приводящий к его наводорожива-нию и последующему водородному охрупчиванию. При введении в коррозионную среду соединений КСФ1-КСФ5 значения критериев приближаются к расчетным данным теории замедленного разряда, что свидетельствует о преобладании молекулярного водорода у поверхности металла и его удалении из среды. [c.273]

    Агрессивными компонентами продуктов термокаталитических процессов являются серовЪдород, хлористый водород, вода и др., образуемые в= результате каталитической деструкции [2, 291, 292]. Они способствуют, в зависимости от марки стали, коррозионному растрескиванию, водородному охрупчиванию, обезуглероживанию и др. [c.8]

    Пусть до начала коррозионного растворения коэффициент интенсивности напряжений в элементе с краевой трещиной (с начальной длиной 1о) равен значению Кю. В процессе работы такого элемента длина трещины в результате коррозионного растворения увеличивается, что приводит к росту КИН. По истечении определенного времени I наступает неустойчивое состояние К] = К1зсс, где Кзсс - критическое значение КИН в данной коррозионной среде. В принципе, значение К1зсс учитывает действие на металл адсорбционного эффекта и водородного охрупчивания, если оно определено в условиях, способствующих их проявлению. Таковы, например, достаточные время выдержки в коррозионной среде, скорость деформации и др. Не теряя общности решения, для простоты анализа будем полагать, что КИН определяется как для полу-бесконечной пластины с краевой трещиной [199] К[ = 1,12о Л. Скорость распространения трещины опре- [c.348]

    Нефтегазопромысловое оборудование эксплуатируется в весьма сложных условиях. Воздействие возникающих в металле растягивающих, щжлических, знакопеременных напряжений, сил трения, кавитации, абразивного износа и др. в контакте с коррозионно-агрессивной средой приводит к спещ1фическим видам коррозионного разрушения оборудования, таким, как коррозионное растрескивание, водородное охрупчивание, питтинг и др., которые в значительной мере снижают долговечность и надежность оборудования. [c.4]

    Достаточный уровень прочности, свариваемости, прокалИ-ваемости и др. Имеются данные о значительном повышении стойкости стали к водородному охрупчиванию при легировании медью (до 0,25—0,30%) без ухудшения других свойств [49]. Показано [7] благоприятное влияние молибдена на стойкость к сульфидному растрескиванию высокопрочной стали марки 8АЕ4130 с пределом текучести около 84-10 Н/м . При более высоком пределе текучести оптимальным оказалось содержание 0,75% Мо. Для высокопрочной стали марки 5АЕ4135 с пределом текучести от (76—98) Ю Н/м наиболее эффективной оказалась добавка 0,75% Mo + 0,035%Nb. [c.24]

    В нефтяных скважинах с высоким давлением сероводородсодержащего газа в затрубном пространстве основной причиной разрушения насосно-компрессорных труб и обсадных колонн является водородное охрупчивание. Например, на Карпенковском месторождении [c.132]

    Перспективным способом защиты стальных насосно-компрессорных труб от водородного охрупчивания в условиях сероводородсодержащих нефте- и газопромысловых сред могут стать гальванические титановые покрытия. Как показали исследования [19], после закалки стали Д с 880 °С и отпуска при 400—500 °С образцы с тг[тановым покрытием толщиной 50 мкм, полученным нз расплавленного хлористого электролита, при катодном наводороживании ( к = 100 А/м ) в растворе 0,05н. H2S04+0,01 кг/м= ЗеОг и температуре 25°С не давали трещины при напряжении в условиях изгиба 0,955(Тт за 10 ч, в то время как нетитанированные образцы разрущались за 5—10 мин. Защитные свойства титанового покрытия против водородного охрупчивания авторы объясняют низким коэффициентом диффузии водорода в титане в условиях образования его гидрида, а также обеднением углеродом и повышением пластичности слоя стали, прилегающего к титановому покрытию. [c.137]

    Влияние легирующих элементов и структуры на сопротивле ние конструкционных сталей водородному охрупчиванию / С. Л Голонапенко, В. И. Зинеев, Е. Б. Серебряная, Л. В. Попопа, — Металловедение н термическая обработка металлов. 1978, № 1, с. 2—14. [c.224]

    Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не проис.чодит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов. [c.35]


Библиография для Водородное охрупчивание: [c.225]   
Смотреть страницы где упоминается термин Водородное охрупчивание: [c.15]    [c.20]    [c.25]    [c.137]    [c.151]    [c.49]    [c.20]    [c.25]   
Смотреть главы в:

Коррозия и защита от коррозии -> Водородное охрупчивание


Катодная защита от коррозии (1984) -- [ c.47 , c.375 , c.399 ]

Химический энциклопедический словарь (1983) -- [ c.104 ]

Ингибиторы коррозии металлов в кислых средах (1986) -- [ c.9 ]

Структура коррозия металлов и сплавов (1989) -- [ c.245 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.104 ]

Коррозия (1981) -- [ c.230 , c.235 , c.239 , c.310 ]




ПОИСК







© 2025 chem21.info Реклама на сайте