Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Решеточные

    Определим, следовательно, АЕ как Е, снабженное указанным выше порядком, а также парой операций типа решеточных, которые 1) порождают элементы, эквивалентные элементам решетки АСЕ при выполнении в ней таких операций, и 2) сохраняют конечность. Наиболее естественная операция пересечения будет, очевидно, просто объединением [c.246]

    В работах [55—56] исследовали реакции алюминийалкилов и ИСЦ с помощью метода электронного парамагнитного резонанса. Установлено, что в суспензии образуются парамагнитные частицы, в то время как выделенные твердые продукты не дают сигналов ЭПР из-за спин-решеточной релаксации ионов трехвалентного Т1. [c.217]


    Уширение, обусловленное спин-решеточной релаксацией, возникает по причине взаимодействия парамагнитных ионов с термическими колебаниями решетки. Изменение во времени спин-решеточной релаксации в различных системах достаточно велико. Для некоторых соединений это время настолько велико, что их спектры удается наблюдать при комнатной температуре. Поскольку, как правило, время релаксации увеличивается с уменьшением температуры, хорошо разрешенные ЭПР-спектры многих солей переходных металлов можно получить лишь при температурах жидкого азота, водорода или гелия. [c.47]

    Уширение, обусловленное спин-решеточной релаксацией, возникает в результате взаимодействия парамагнитных ионов с тепловыми колебаниями решетки. Пределы изменения времени спин-решеточной релаксации для различных систем велики. Время жизни отдельных соединений настолько велико, что позволяет наблюдать спектр при комнатной температуре, тогда как в случае других систем это невозможно. Поскольку время релаксации обычно растет с понижением температуры, для получения хорошо разрешенного спектра многие соединения переходных металлов необходимо охладить до температуры жидкого азота или гелия. [c.204]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]


    Покажите, что операция вращения второго порядка начала координат в сочетании с перпендикулярной трансляцией Т эквивалентна вращению второго порядка относительно оси Г/2. Означает ли это, что решеточная трансляция [1, О, 0] требует, чтобы оператору 2j при (1/4, О, 0) сопутствовал другой оператор при (3/4, О, 0)  [c.407]

    Прокаленный носитель с уровня газораспределительной решетки перетекает в металлическую камеру охлаждения, установленную вокруг печи, имеющую кольцеобразную форму шириной 500 мм. За счет воздуха, подаваемого вентилятором в нод-решеточное пространство над газораспределительной решеткой, создается кипящий слой носителя и его охлаждение. Давление под решеткой 300 Па, разрежение над решеткой 100 Па. Скорость воздуха в слое составляет 0,5м/с. Носитель поступает с температурой 800 °С и охлаждается до 40 °С и через течку, установленную на уровне решетки, и шлюзовой питатель, выгружается из печи. Нагретый воздух из камеры охлаждения подается в горелку ГНП-4 топочной камеры для образования газовоздушной смеси. [c.203]

    Это свидетельствует о том, что уже при комнатной температуре происходит взаимодействие части молекул сероводорода с поверхностными сульфатными группами с образованием воды и, по-видимому, элементной серы. Другая часть молекул сероводорода взаимодействует с поверхностным или решеточным кислородом с образованием сульфат-сульфитных комплексов (1168 и 1308 см ). [c.119]

    Теплоемкости [кал (град г-атом) олова и цинка в сверхпроводящем и в несверхпроводящем состояниях и решеточная и электронная составляющи их в несверхпроводящем состоянии [c.156]

    Использование магнитных свойств некоторых солей дало возможность проводить измерения теплоемкости примерно до 0,2 К. При температурах ниже 1 К Ср многих металлов не превышает 10 —10 кал/К-моль. В этих условиях отчетливо разделяются решеточная и электронная составляющие теплоемкости металлов. [c.29]

    Выделение групп регулярных и атермальных растворов оказалось весьма существенным для теории растворов. Свойства регулярных и атермальных растворов успешно интерпретируются и вычисляются на основе представлений так называемой решеточной теории, имеющей большое значение для растворов неэлектролитов. [c.364]

    Окисление нафталина Диффузия решеточного кислорода [52, 53] Ванадий-калий-суль-фат-силикагелевый Т = = 340° Р = 0,1 МПа 10-20 0,25-7,5 [c.21]

    С помощью примитивов, изображенных на рис. VI. . К, в результате построения предложений получаются искаженные треугольники (рис. VI.7.V/). Там же приведены вероятности искаженных треугольников [134]. В работе [135] рассматриваются двумерные, так называемые решеточные грамматики, использующие не последовательности, а двумерные решетки, заполняемые вспомогательными символами, а также имеющие белый или фоновый элемент. Из ячеек решеток строятся примитивы. Известны также матричные и тканые грамматики [136]. [c.255]

    При низких температурах метод Эйнштейна дает заниженные значения теплоемкости, по его результаты свидетельствовали о том, что квантовая теория применима к решеточным волнам. Как следствие этого, существует квант энергии такой волны, называемый теперь фононом но аналогии с квантом энергии электромагнитной волны. [c.189]

    С. Теплопроводность полупроводников. Полупроводники занимают промежуточное положение между металлами и изоляторами. Их теплопроводность можно оценить как сумму решеточной и электронной Х теплопроводности. Последняя может быть рассчитана по закону Видемана— Франца—Лоренца  [c.191]

    Для определения энтропии смешения линейного полимера с низкомолекулярным растворителем необходимо предположить, что разме ) сегментов макромолекулы (звенья) равен размеру молекулы растворителя. Иногда в качестве сегмента берут мономерную единицу, а за нх число г в цепи макромолекулы принимают степень полимеризации. Используя решеточную модель раствора, в которой отдельные узлы решетки заняты молекулами растворителя или сегментами макромолекулы, обладающей гибкостью, рассчитывают число возможных расположений микромолекул. Число частиц, принимающих участие в перестановках, равно = 1 22. После расчета полной статистической вероятности Я в соответствии с уравнением Больцмана (5 = й 1пй) определяют энтропию смеше- [c.322]

    Введем в уравнения (1Х.18) и (IX.19) члены, учитывающие спин-решеточную релаксацию. Рассмотрим образец, находящийся в постоянном магнитном поле в отсутствие переменного поля. Равновесное распределение спинов по уровням осуществляется благодаря взаимодействию спинов с решеткой. Непрерывно происходят как переходы спинов с нижнего уровня на верхний (при этом тепловая энергия решетки расходуется), так и обратные переходы, сопровождающиеся передачей энергии решетке. Обозначим константы скорости (вероятности за 1 с) переходов ( + )->(—) и (—) ( + ) через а1 и аг соответственно. Тогда, в отсутствие переменного поля [c.233]

    Уравнение (1Х.22) описывает процесс спин-решеточной релаксации и показывает, как , если оно почему-либо оказалось неравным п , приближается к своему равновесному значению. Этот процесс описывается экспоненциальной зависимостью и характеризуется временем спин-решеточной релаксации 7 ь за которое разность п— уменьшается в е раз. Объединив уравнения (IX.22 и 1Х.18), получим кинетическое уравнение, описывающее поведение спиновой системы, подвергающейся действию переменного поля с учетом спин-решеточной релаксации  [c.233]


    В противоположность спин-решеточному взаимодействию спин-спиновое взаимодействие практически не зависит от температуры, однако очень быстро уменьшается с увеличением среднего расстояния между спинами. Таким образом, на величину этого взаимодействия можно влиять, изменяя концентрацию парамагнитных центров. [c.234]

    Определение времени спин-решеточной релаксации. Для измерения Г, применяют так называемую импульсную последовательность 180°, т, 90° (т —задержка между 180 п 9Ь°-ными импульс ь ми) 180°-ный импульс поворачивает вектор намагниченности М вдоль оси 2, далее следует релаксация намагниченности от значения —Мо до М. Последующий 90°-ный импульс поворачивает вектор [c.257]

    Поскольку упругие свойства свободной цепи отличаются от ее свойств в кристаллической решетке, то взаимодействие между напряжением цепи и решеточным потенциалом будет продолжаться до тех пор, пока в каждой точке цепи не установится равновесие. Это взаимодействие можно описать с помощью того же самого математического формализма, что был предложен выше. Поскольку предполагается, что концы цепи свободны, то осевые напряжения на них равны нулю. Точно такое же условие получается, если приложить гипотетическое напряжение сжатия ст (выражение (5.35)), соответствующее выражению (5.33), где [c.142]

    Время спин-решеточной релаксации измерялось с помощью последовательности радиочастотных импульсов 90°— г — 180°—X 1—90°—т—180° и 90°—т—90°. Для измерения спин-спиновой релаксации использовалась последовательность 90°— X—180°. [c.103]

    Если бы на рис. 11.6 диаметры капилляров были неизменны по всей длине, то эта схема соответствовала бы модели Козени— Кармана (11.31) и демонстрировала основной формальный дефект этой модели. Ведь при приложении перепада давления в направлении, перпендикулярном плоскости рисунка, жидкость сквозь слой течь не сможет. В связи с этим Дюллиеном [25] была предложена сетевая или точнее решеточная модель структуры зернистого слоя в виде совокупности трех систем взаимно перпендикулярных капилляров, пересекающихся в узлах пространственной кубической решетки (рис. 11.7). Как указал ему Курц, проницаемость подобной сети капилляров должна быть одинаковой при-любой ориентации направления среднего потока относительно трехмерной системы каналов, что было в дальнейшем подтверждено Дюллиеном аналитически. [c.37]

    Эффективность использования симплшс-решеточного плана иллюстрируется следующим примером по определенш оэффициентов уравнения, описывающего смешение семи компонентов. [c.182]

    Парциальный мольный объем растворенного в полимере газа может быть оценен на основе теории фазового равновесия в растворах полимеров, в частности, по решеточной модели Флори и Хиггинса. Краткий обзор работ в этой области и некоторые расчетные соотношения приведены в [2]. Напомним, что вели-ЧИНЗ V т имеет тот же порядок, что парциальный мольный объем жидкой фазы растворенных газов, т. е. 30—50 см /моль, поэтому при давлениях в напорном канале до 5 МПа окажется, что У,т°°Р/Р7 <1. Следовательно, влияние давления на константу Генри незначительно и может быть учтено в виде поправки [2]. [c.98]

    Для неидеального разбавленного раствора, характеризуемого образованием комплексов из взаимодействующих частиц, в дополнение к основным допущениям решеточной теории жидкостей [4] необходимо потребовать, чтобы число молекул растворителя М значительно превосходило число атомов N растворенного вещества (М N), что позволит по-прежнему пренебречь межкомплексным взаимодействием. Тогда интеграл состояний преобразуется к виду, аналогичному для неидеального газа произведению суммы по состояниям для растворителя и сумм по состояниям для комплексов из / атомов в усредненном поле растворителя 2. В предположении независимости локальной концентрации растворителя вблизи комплекса от П , т. е. сохранения структуры растворителя, 2 - не зависит от П].  [c.17]

    По способу монохроматизации лучистого потока приборы с призменным или решеточным монохроматором, позволяющие достигать высокой степени монохроматизации рабочего излучения, называют спектрофотометрами приборы, в которых моно-хроматизация достигается с помощью светофильтров, называют фотоэлектроколориметрами. [c.63]

    Основой экспериментальных методов измерения радиационных характеристик газа является просматривание при помощи радиометра слоя газа, помещенного в замкнутый объем или находящегося в иных условиях. Радиометр может быть интегрирующим прибором типа калориметра илн радиометра на основе термисторного моста, прибором малого разрешения, таким, как призма или спектрометр с переменг1ым фильтром, а также прибором с высоким спектральным разрешением — тина преце-зионного решеточного спектрометра или интерферометра. Газ помещают в ячейку с окнами или исследуют в открытой струе. Окна, в свою очередь, могут быть нагретыми или холодными. В промежуточном варианте газ заключают в ячейку с открытыми окнами. Обзор экспериментальных методов приведен в 14, 5). [c.486]

    Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла. [c.163]

    Спнн-решеточная релаксация — это любой процесс, в результате которого избыток энергии спинов передается другим степеням свободы отдельных молекул, жидкости или твердому телу ( решетке ). Физические механизмы передачи энергии могут быть различными. Одним из путей передачи энергии спинов решетке является спин-орбитальная связь, благодаря которой осуществляется взаимодействие спина с решеткой. Заметим, что процессы релаксации всегда стремятся изменить значение Ы+1М- в сторону (Л +/Я )равн. [c.232]

    Спип решеточное взаимодействие, а следовательно, и величина Т зависят от температуры. С ростом температуры снин-решеточное взаимодействие увеличивается, а 7 ] падает. Из формул (1Х.23) и (1Х.25) видно, что 1) при 2кГ1<1 величина разности за- [c.233]

    Спи и- спиновая релаксация — это процесс, прн котором происходит переход спина с верхнего уровня на нижний, а выделяющаяся при этом энергия безызлучательно передается какому-либо другому спину, находящемуся на нижнем уровне. Спин, получивший энергию, переходит на верхний уровень. Вследствие этого процесса происходит перераспределение энергии по всей спиновой системе. В основе спин-спинового взаимодействия лежит тот факт, что в любой реальной системе парамагнитная частица находится не только во внешнем магнитном поле, но также подвергается воздействию локальных магнитных полей, создаваемых соседними парамагнитными центрами. Спин-спиновая релаксация характеризуется, аналогично спин-решеточной релаксации, временем спин-спиновой релаксации T a T a — среднее время жизни спина на верхнем уровне, обусловленное спин-спиновой релаксацией. Аналогичным образом может быть определено и — как среднее время жизни спина на верхнем уровне, обусловленное спин-решеточной релаксацией, [c.234]

    Сильное спип-спнновое взаимодействие, которое осуществляется прн больших концентрациях (средних пли локальных) парамагнитных центров, увеличивает вероятность спин-решеточной релаксации и уменьшает величину Ti. [c.234]

    Время спнн-решеточной релаксации в ЯМР может изменяться от 10 до 10 е и зависит от температуры образца, коицеитрацпи магнитных ядер и вязкости среды. При больших значениях Т] тепловое равновесие молсет быть нарушено при достаточно большой мощности электромагнитного излучения. Интенсивность сигнала поглощения в спектре ЯМР при этом уменьшается, наступает насыщение. [c.256]

    Такой тип релаксации обычно сильно проявляется в твердых телах и очень вязких жидкостях, когда взаимодействующие частицы оказываются во множестве локальных полей соседних магнитных диполей. В твердых телах обычно 7 2<с7 1, т. е. спин-спиновое взаимодействие оказывается сильнее спин-решеточного и дает основной вклад в ширину линии. В жидкостях вследствие быстрого движения молекул локальные магнитные поля усредняются и основным вкладом в и1ирину линии является спин-решеточная релаксация. [c.257]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Еще при проведении первых исследований полимеров было известно, что как естественные, так и искусственные полимеры кристаллизуются [14а]. Рентгеновский анализ позволил раскрыть решеточную структуру и определить размеры единичной ячейки кристаллов полимера. До 1957 г. полагали, что кристаллиты — мицеллярного типа. Предполагалось, что типичная мицелла представляет собой пучок из нескольких сотен различных молекул, которые, покидая мицеллу и проходя аморфные области, хаотично соединяют мицеллы друг с другом. В 1957 г. Фишер [15], Келлер [16] и Тплл [17] независимо друг от друга открыли и предположили, что полимеры состоят из монокристаллических ламелл со сложенными цепями На рис. 2.2 показана электронная микрофотография пачки монокристаллов ПЭ [18], выращенной из разбавленного раствора, а на рис. 2.3 — укладка цепных молекул в подобных ламеллярных кристаллах. Здесь цепи ПЭ сложены (с поворотом цепи после каждой складки) в плоскости (ПО) ортором-бического кристалла ПЭ. Размеры единичной ячейки определены в работе [19] а = 0,74 нм, 6 = 0,493 нм, с = 0,353 нм (направление оси цепи). [c.28]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]

    Основной эффект, который вносит поверхность, заключается в уменьщенпп подвижности адсорбированных молекул. Результатом этого является экспериментально наблюдаемое уменьще-пие времени релаксации у поверхности по сравнению со свободной жидкостью. Установлено экспериментально и теоретически, что релаксационные характеристики Г, пТ. изменяются в породах пропорционально размерам пор пли общей величине удельной поверхности, которая и определяет адсорбционные с1 -И"1ства, Жидкости в порах реальных иород-коллекторов представляют собой сложную спиновую систему, состоящую из двух-трех подсистем, возникающих вследствие влияния поверхности коллектора. В этом случае релаксационная кривая представляет сложную экспоненту, которая мож т быть разложена на две-три [4]. Каждая из таких составляющих характеризует процентное содержание выделенной спин-системы и время ее сиин-решеточной релаксации. Простейшая модель жидкости в порах — двухфазная. Компонента с более коротким временем релаксации отвечает связанной жидкости, а компонента с более длинным — свободной. В трехкомпонентной модели поровое пространство коллектора делится на три группы с различной удельной поверхностью, причем молекулы жидкости, находящиеся в порах разных групп, характеризуются различной степенью подвижности. Основные трудности в этой модели возникают при разложении кривой спада амплитуды сигнала на три экспоненты, которые преодолеваются путем применения программ нелинейного регрессионного анализа. Кроме того, в этой модели появляется новый параметр — критическое время спин-решеточной релаксации. Жидкость в порах, характеризуемых временем релаксации, меньше критического, является связанной. [c.102]

    В нашей работе использовалась двухкомпонентная модель. Определение связанной воды и времени релаксации одного образца занимает время до 20 минут. Для аппроксимации данных по измерению спин-решеточной релаксации в рамках двух-< 1азной системы процедура следующая. В полулогарифмических координатах (рис. I) строят кривую спада разности равновесной [c.102]

    Annapai ypa позволяет измерять время спин-сппновой релаксации T a в диапазоне от 10 до нескольких секунд, время спин-решеточной релаксации Ту от Ю" до десятков секунд. Точность измерения времени релаксации не хуже +10%. [c.103]


Смотреть страницы где упоминается термин Решеточные : [c.204]    [c.155]    [c.16]    [c.99]    [c.258]    [c.91]    [c.409]    [c.139]   
Физико-химия полимеров 1978 (1978) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте