Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Композиционные материалы огнестойкость

    На горючесть наполненных полимерных материалов оказывает влияние не только химическая природа наполнителя, но и его дисперсность, а также прочность сцепления наполнителя и связующего. С увеличением адгезии возрастает прочность материала, что зачастую сопровождается увеличением огнестойкости и стабильности к термоокислению. Например, при введении аэросила в поливинилхлорид температура разложения увеличивается с 580 до 610 °С, а при введении кварцевого песка температура разложения уменьшается до 565 °С [125]. Однако даже в случае удачного подбора наполнителя процесс воспламенения и горения композиционных материалов определяется степенью однородности и изотропности материала, концентрацией негорючих частиц в поверхностных слоях материала. [c.105]


    Со)полимеры АА нашли широкое применение и в текстильной промышленности. Для защиты нитей при переработке на них наносится защитный слой крахмала и желатины. В качестве защитного слоя при шлихтовании нитей более перспективно использование (со)полимеров АА, которое позволяет значительно сократить объемы дефицитных пищевых продуктов - крахмала и желатины. Для шлихтования нитей используются и сополимеры АА с винилацетатом (О < < 0,82), при этом можно использовать некондиционные ПАА и сополимеры АА с низкими значениями ММ. Шлихта с низкомолекулярными (со)полиме-рами АА быстро сохнет с образованием прочной пленки, обладающей повышенным влагопоглощением [18]. Высокомолекулярные (со)поли-меры АА используются в качестве аппретивов для тканей, при этом особенно хорошие результаты получены для метилольных производных АА. При взаимодействии метилольных групп макромолекул сополимеров АА с гидроксильными группами целлюлозы образуется особая сетчатая структура композиционного материала, придающая аппретированному волокну упругость и несминаемость. Сульфомети-лированный ПАА, сополимеры АА с этиленсульфокислотой и стиролсульфокислотой успешно применяются для придания тканям антистатических свойств и для повышения их огнестойкости, а также для уменьшения загрязняемости. Экспериментально было показано, что при переходе от ПАА к статистическим сополимерам АА со стиролсульфокислотой резко изменяется (на четыре и пять и более порядков в сторону уменьшения) поверхностное сопротивление, в меньшей степени - объемное сопротивление волокон и пленок. [c.173]

    На примере модификации капроновой нити фенолформальдегидной смолой было показано улучшение смачиваемости волокна той же смолой при получении композиционного материала. Совместное отверждение смолы, протекающее в объеме волокна, с отверждаемой матрицей приводит к существенному повышению прочности связи волокна с матрицей, а в ряде случаев — и к улучшению прочности нити. Обработка поверхностей наполнителей аппретами проводится и с другими целями. При введении дисперсных наполнителей, обработанных различными аппретами, снижается вязкость, повышаются текучесть и водостойкость материала, увеличивается количество вводимого наполнителя при одновременном снижении температуры переработки композиции. Использование органотитанатных аппретов [229] открывает еще более широкие возможности поверхностной обработки практически всех существующих минеральных наполнителей. Их общая формула (КО) Т1 (ОХ - К - У -) , г де КО - легко гидролизуемая группа У - органофункциональная группа, реагирующая со связующим (акриловая, метакриловая, ОН, ЫН 2 и т.д.) ОХ - группа, сообщающая дополнительные свойства (повышение совместимости, придание огнестойкости, пластификация, повышение термоокислительной стойкости, придание композиции тиксотропных свойств и др. Сильными поверхностно-активными веществами являются органотитановые аппреты. Поверхностно-активными свойствами обладают также и силановые аппреты. Принципы взаимодействия ПАВ с наполнителями рассмотрены в работе [227]. [c.84]


    АФС, наполненные высокомодульными волокнами, превращают в композиционные материалы, способные работать до 1650°С. Если используют волокна из оксида кремния, получают радиопрозрачные материалы [158]. Алюмофосфатным связующим пропитывают изделия из углерода, что уменьшает их окисляемость (антифрикционные материалы), причем скорость окисления снижается на порядок. На основе АХФС готовят пенопластик, смешивая связку с фенольной смолой и вспенивателем—алюминиевой пудрой. Кроме того, вводят наполнитель (золы, глины), что повышает прочность, нагревостойкость, огнестойкость [159]. Фосфатофенопластик используют для тепловой защиты металлических покрытий (до 200 °С). Поропласты также готовят на основе АФС и корунда Si02 с органической массой (16—47 %) и вспенивателем. После получения материала при 180—190 °С его нагревают при 1100 °С до удаления органики. Получающийся пористый материал имеет плотность 1,2 г/см и прочность [c.140]


Промышленные полимерные композиционные материалы (1980) -- [ c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Материал композиционный



© 2025 chem21.info Реклама на сайте