Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Течение жидкостей отрицательный градиент скорости

    Если градиент скорости положителен, то сила отрицательна и действует в направлении, противоположном паправ.лению движения. Когда один слой жидкости движется относительно другого слоя с постоянной скоростью, то возникает сопротивление, или тангенциальная сила. Ньютон первым показал, что эта сила пропорциональна величине поверхности слоя Q и градиенту скорости du/dz в направлении, перпендикулярном направлению движения. Множитель пропорциональности обозначается через — т], причем т] называют коэффициентом вязкости или просто вязкостью. Общий закон вязкого течения имеет вид [c.58]


    При течении внутри сопла градиент давления отрицателен. Сначала, когда V х и, ъ соответствии с уравнением (5.14) газ ускоряется относительно жидкости (у — м)/йж > 0. Однако при определенных значениях V, и я р величина 1 — PfV р — и)/р становится отрицательной, а так как и < О, то относительная скорость соответственно уменьшается. Это действительно можно заметить в экспериментах Мьюра и Эйххорна [25] рис. 5 заимствован из этой работы. [c.91]

    Член ЛУс в уравнении Джонса—Дола учитывает силу, тормозящую вязкое течение и возникающую при электростатическом взаимодействии растворенных ионов. Это взаимодействие можно вычислить на основании теории сильных электролитов Дебая — Хюккеля [70] (ом. разд. 5.1). В соответствии с этой теорией, одновременное действие сил электростатического притяжения и отталкивания и теплового движения приводит к тому, что каждый ион окружен избыточным числом ионов противоположного знака. Ионное облако вокруг данного покоящегося иона, находящегося в положении равновесия, статистически в среднем имеет сферическую симметрию (рис. 2.14,а). Следовательно, результирующая всех сил, действующая на ион, находящийся в центре ионного облака, будет равна нулю. Однако если жидкость течет и градиент скорости в жидкости, например, постоянен, то ионное облако дефо рмируется (рис. 2.14,б,в). Это можно объяснить тем, что для восстановления формы ионного облака необходимо некоторое время время релаксации). Если распределение скоростей в потоке жидкости будет таким, как на рис. 2.14,6, то ионное облако вокруг положительного иона будет содержать избыточное по сравнению со сферически симметричным число отрицательных ионов в правом верхнем и левом нижнем квадрантах. В двух других квадрантах число ионов будет меньше, чем в случае сферической симметрии. Это приводит к появлению тангенциальной силы, направленной против движения и увеличивающей вязкость. Радиус электростатического взаимодействия между раство- [c.158]

    Рассмотренный нами ламинарный пограничный слой не охватывает всей совокупности явлений, возникаюш,их у поверхности тел, обтекаемых вязкой жидкостью. При увеличении Ке и толщины пограничного слоя структура его усложняется оставаясь ламинарным непосредственно у стенки, пограничный слой в большей своей части становится турбулентным. Точные решения дифференциальных уравнений турбулентного пограничного слоя еще не разработаны, и для его исследования применяются приближенные методы, основанные на уравнении количества движения. Отличный от ламинарного закон касательных напряжений в турбулентном потоке приводит к иному профилю изменения скоростей в пограничном слое в функции расстояния от стенки, чем это имеет место в ламинарном пограничном слое, и, следовательно, к иной функциональной зави-симосФи коэффициента трения от числа Ке. Однако течение жидкости в турбулентном пограничном слое подчинено тем же граничным условиям, Щ что и в случае ламинарного пограничного слоя. Отсюда, поведение тур- булентного пограничного слоя во многом сходно с Jлaминapным, т. е., обеспечивая обтекание контура тела в области отрицательных градиентов давления, турбулентный пограничный слой в области положительных градиентов давления в некоторой точке затормаживается и приводит к отрыву внешнего потока от контура обтекаемого тела с образованием вихревого гидродинамического следа.  [c.137]


    Установившемуся течению вдали от входа в канал соответствует постоянный отрицательный градиент давления дР/дХ = —AP/L = = onst (АР — перепад давления на длине канала L), при этом поперечная компонента скорости жидкости равна нулю. Продольная составляющая скорости V = зависит только от координаты и описывается уравнением т/ = —AP/L. Интегрируя это уравнение с учетом условия симметрии (т = О при S, = h), имеем [c.269]

    Рассмотрим выражения (1.1.7) и (1.1.8) подробнее. Как следует из выражения для четвертый член в правой части определяется только полем скоростей жидкости и не содержит никакой информации о директоре. Коэффициент 4 является аналогом изотропной вязкости, он всегда положителен. Члены с угловой скоростью директора Nj содержат коэффициенты вязкости 2 и 3. Для нематиков, состоящих из удлиненных стержнеобразных молекул, эти коэффициенты отрицательны, что соответствует увеличению, а не уменьшению деформации директора в потоке жидкости (подробнее см. ниже). Оба коэффициента и з входят в члены, не содержащие скоростей и их градиентов, т.е. связаны только с переориентацией директора. Особенно это относится к их комбинации 71 = аз — 2, называемой также вращательной вязкостью НЖК или коэффициентом вязкости Цветкова. Как мы увидим ниже, вращательная вязкость описывает случай поворота директора в отсутствие каких-либо течений. В НЖК коэффициенты 5 и uq имеют разные знаки, причем 5 > О, а е < 0. Коэффициент а соответствует деформации растяжения. Для нематиков, состоящих из удлиненных стержнеобразных молекул, он отрицателен. Кроме того, из неравенств, связанных с ростом энтропии (типа (1.1.5)), следуют такие сотношения между коэффициентами Лесли  [c.10]


Смотреть страницы где упоминается термин Течение жидкостей отрицательный градиент скорости: [c.330]    [c.142]    [c.240]   
Явления переноса (1974) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкость течение

Скорость градиент

отрицательная



© 2025 chem21.info Реклама на сайте