Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репрессор гистоны

    Итак, помимо того, что доказана методическая возможность выделения хроматина с сохранением системы регуляции синтеза информационной РНК, необходимой для синтеза глобулина семян гороха, описанные эксперименты показывают также, что регулятором служит гистон. Однако пока не известно, во всех ли случаях репрессорами, регулирующими активность генов, служат гистоны. [c.525]


    Существенную роль в регуляции процессов транскрипции играют специфические негистоновые белки, выступающие в качестве активаторов и репрессоров, рецепторов физиологически активных веществ (фитогормонов), ферментов, модифицирующих нуклеотиды и гистоны, и др. [c.313]

    Какие же другие функции кроме нейтрализации зарядов ДНК выполняют гистоны Первоначально считали, что эти белки могут играть, роль репрессоров генов аналогично тому, как это происходит у бактерий. Однако экспериментального подтверждения это предположение не получило. Гистоны, по-видимому, образуют своеобразный комплекс с нитями ДНК. Сравнительно недавно с помощью электронного микроскопа были получены микрофотографии, на которых видно, что хрома-типовые волокна имеют регулярно повторяющееся строение, напоминая нитки бус. Диаметр бусинки (или у-телец, или нуклеосом) составляет 7—10 нм, а длина свободной нитки между бусами равна 2—14 нм. (рис. 15-35] [290—294]. Содержание ДНК в бусинках велико. Данные, полученные методом дифракции нейтронов, свидетельствуют о том, что в у-частицах нить ДНК намотана вокруг гистонового олигомера-(рис. 15-36) [295]. Гистоны Н2а, Н2в, НЗ и Н4 обнаруживаются почти в одинаковом количестве — на каждые 100 пар оснований в ДНК приходится по одной молекуле каждого из гистонов. В растворе был получен октамер, содержащий по две субъединицы гистонов каждого типа [296]. [c.302]

    На основе описанных выше данных была сформулирована современная точка зрения, согласно которой основная функция гистонов состоит в том, чтобы обеспечить необходимую упаковку ДНК. Однако иногда гистон Н1 называют общим репрессором, удерживающим хроматин в компактно упакованном состоянии, препятствующем транскрипции. Поскольку процесс инициации митоза сопровождается фосфорилированием гистона Н1 при помощи специальной протеинкиназы, можно предположить, что этот гистон играет какую-то иную роль [ЗОО]. Другие гистоны, особенно Р4, подвергаются множеству модифицирующих воздействий, в том числе ацетилированию и фосфорилированию (обратимо) и -метилированию (необратимо) [301]. Значение этих реакций в регуляции таких процессов, как транкрипция и репликация, до сих пор неясно. [c.304]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]


    Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для их объяснения существует ряд гипотез. Предполагают, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры. С молекулой ДНК у эукариот связаны гистоны, поэтому считается, что именно эти белки выполняют роль репрессоров. Прямых доказательств их роли в качестве репрессоров не получено, хотя, как было показано, в клетках эукариот открыт класс регуляторных белков процесса транскрипции. Высказано предположение, что в ядре синтезируется высокомолекулярная молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму попадает только небольшая часть зрелой мРНК, а основная часть ее распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и соответственно траты огромной массы молекулы мРНК. [c.540]

    Менее определена функция группы регуляторных белков и пептидов, поскольку, в известной степени, эту роль выполняют любые белки. Сюда относят белково-пептидные вещества, не вошедшие в состав вышеупомянутых групп, но весьма важные для функционирования отдельных звеньев клеточного механизма, например гистоны и репрессоры, регулирующие активность генов, воротные белки мембранных каналов, рибосомальные белковые факторы инициации и злонгации (см. с. 422). К этой группе можно отнести и встречающиеся в мышечной ткани природные пептиды карнозин и ансерин. [c.23]

    Хромосомы высших организмов, клетки которых содержат ядра, состоят не только из ДНК и из РНК ядрышек они содержат также довольно много белков, так называемых гистонов, молекулярный вес которых колеблется в пределах от 2000 до 10 ООО. Это гораздо ниже молекулярного веса ферментных белков и даже их субъединиц. Как предполагается, гистоны служат для того, чтобы препятствовать преждевременному считыванию информации, которая будет нужна только на более поздних стадиях развития. В таком случае они тоже, возможно, являются своего рода репрессорами (эту проблему мы обсудим несколько позже). [c.288]

    Роль гистонов в процессе дифференцировки. Функции постоянно действующих репрессоров частично или полностью выполняют гисто-ны — сильноосновные белки, связанные с ядерной ДНК в эукариотических клетках с молекулярной массой 10 ООО—21 ООО молярное содержание лизина и аргинина в молекулах гистонов достигает 25—30 %. Гетеро-генность гистонов по первичной структуре сравнительно невелика. В большинстве клеток эукариотов содержится пять основных гистоновых фракций, некоторые из которых можно разделить еще на 3—5 субфракций, гомогенных по аминокислотной последовательности. Общее число гомогенных по первичной структуре гистоновых фракций не превышает 10—12. Высокий, равномерно распределенный положительный заряд молекул гистонов обусловливает образование прочных комплексов гис-тон — ДНК. В ядрах эукариотических клеток значительная часть ДНК находится в форме дезоксирибонуклеогистонных комплексов. Например, прокариоты не обладают способностью к дифференцировке по причине отсутствия в них сильноосновных белков. Итак, присутствие больших количеств гистонов в ядрах эукариот указывает на существенную роль гистонов в процессе дифференцировки. [c.395]

    Большинство генетических процессов зависит от взаимодействия между молекулами белков, которые одновременно связываются с близлежащими сайтами ДНК. В простейшем случае два сайт-специфических белка, участки связывания которых частично или полностью перекрываются, конкурируют друг с другом за место на спирали ДНК (рис. 9-15, А). Например, белок-репрессор может подавлять транскрипцию гена, блокируя связывание активирующего белка с ДНК. Однако белки могут и помогать друх другу более прочно удерживаться на ДНК. Такое кооперативное связывание может происходить как между двумя различными молекулами белка (рис, 9-15, Б), так и между двумя копиями молекул одного типа. В последнем случае белки, как правило, связываются по типу все или ничего и образуют на ДНК кластеры При повышении концентрации этих белков, их связывание с ДНК резко возрастает (рис. 9-15, В). В качестве примера кооперативно связывающихся белков такого типа можно привести спираль-дестабилизируюгций белок, белок гее А (гл. 5) и гистон Н1. [c.106]

    Чем же объясняется такое неслучайное расположение нуклеосом Показано, что в некоторых случаях (например, для нуклеосом. связанных с генами 5S-pPHK) смесь четырех очищенных гистонов, составляющих нуклеосому, in vitro образует ее точно на том же месте, где она расположена in vivo. Возможно, причина заключается в том, что нуклеосомы стремятся связаться таким образом, чтобы максимально заполнить богатую АТ малую бороздку ДНК. Такое предпочтение вызвано тем, что двойную спираль ДНК трудно уложить двумя плотными витками вокруг гистонового октамера, и для этого требуется значительное уплотнение на малой бороздке спирали ДНК (рис. 9-24). Как установлено на примере белка репрессора бактериофага (см. рис. 9-17). кластер, состоящий из двух или грех пар АТ и расположенный в малой бороздке, облегчает возникновение такого уплотнения. На характер расположения нуклеосом должны влиять и другие неизвестные пока свойства последовательности ДНК. [c.112]

    Удаление гистона Н1 из транскрипционно активного хроматина [151 —154]. В ранних опытах Дж. Боннера (США) было показано, что ДНК в составе хроматина является гбраздо худшей матрицей, чем свободная ДНК-На основании этих наблюдений было высказано предположение, что гистоны являются репрессорами транскрипции. [c.143]



Смотреть страницы где упоминается термин Репрессор гистоны: [c.251]    [c.251]    [c.259]   
Биохимия Том 3 (1980) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Гистоны



© 2025 chem21.info Реклама на сайте