Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Первичная структура

    Первичная структура белков [c.341]

    Ниже будут рассмотрены основные химические методы синтеза полипептидов. Они основаны на последовательно реализуемых стадиях поликонденсационных процессов. Два фактора определяют сложность используемых методов необходимость получения высокомолекулярных полипептидов в количествах, достаточных по крайней мере для исследования полученных соединений, и необходимость получения полипептидов с заданной первичной структурой. До настоящего времени преодолеть эти экспериментальные трудности не удалось. [c.350]


    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Зависимость [/,2] / от степени полимеризации Р макромолекулы определяется химическим строением (первичной структурой) полимеров  [c.84]

    Как влияет первичная структура макромолекулы на ее гибкость  [c.117]

    Ответ на эти вопросы дают два понятия. Во-первых, все белки различаются своей последовательностью аминокислот. Около 20 аминокислот могут располагаться в любом порядке, к тому же может использоваться любое количество аминокислот. Так образуется огромное количество разных цепей или белков. Человеческое тело содержит почти 5 миллионов разных видов белков. Последовательность, в которой располагаются аминокислоты, называется первичной структурой белка. [c.452]

    Исследования, связанные с использованием цеолитов для осушки, очистки и разделения углеводородов, показали, что они оказывают каталитическое действие на ряд процессов, например на полимеризацию олефинов и др. Состав продуктов полимеризации, получаемых на цеолитах, сходен с составом продуктов, получаемых при использовании в качестве катализатора фосфорной кислоты на кизельгуре. Хотя цеолиты в целом имеют щелочную реакцию, но, очевидно, они обладают и некоторыми кислотными участками, так как их действие в нроцессе полимеризации олефинов подобно действию других кислотных катализаторов полимеризации. В соответствии с этим наиболее активными катализаторами для полимеризации олефинов являются более кислые цеолиты формы X. Вероятно, у цеолитов этой формы кислотные участки находятся как во вторичной (в порах между кристаллами), так и первичной структуре (в порах кристаллов), а у цеолитов формы А — только во вторичной структуре. [c.99]

    Объяснение первичной структуры инсулина английским биохимиком Ф. Сэнгером (род. 1898 г., лауреат Нобелевской премии 1958 г.). [c.284]


    Описанные процессы синтеза полипептидов очень трудоемки и практически исключают возможность получения достаточно высокомолекулярных полипептидов с заданной первичной структурой. [c.352]

    В настоящее время известно, что по первичной структуре пор катализаторы и носители делятся на две группы. [c.174]

    Гранулы (зерна) первой группы являются вторичными образова-ниями ( вторичными структурами), представляющими собой системы корпускулярного строения, в которых поры образованы промежутками между первичными мелкими частицами различной формы ( первичными структурами). К этой группе относятся ксерогели (стекловидные силикагель, алюмогель и другие гели), керамика, в том числе корундовая и др. Следует отметить, что ксерогели имеют-глобулярное строение, т. е. получаются в результате агломерации [c.174]

    Вторичные частицы (гранулы), являющиеся бидисперсными, получаются агломерацией тем или иным технологическим приемом (см. раздел V.2) частиц с первичной структурой. [c.175]

    Как мы уже отмечали, ориентирующее влияние ионов на молекулы воды очень велико. Поэтому оно, по-видимому, распространяется за пределы первой гидратной сферы, т. е. между упомянутым слоем и молекулами воды, характеризующимися собственной (неискаженной) структурой растворителя, располагается промежуточная сфера возбуж-Д( нных молекул воды. Все три структурные зоны растворителя находятся в равновесии между собой. Таким образом, эффект внедрения иона в растворитель можно расчленить на две составляющие — непосредственное связывание ионом молекул растворителя и его воздействие на первичную структуру последнего. Благодаря уплотнению молекул растворителя вокруг иона процесс сольватации обыч-го сопровождается сжатием раствора. [c.171]

    Вопрос. Как будут отличаться друг от друга значения О двух полимеров, различающихся по химическому составу, а следовательно, имеющих различную первичную структуру, но образующих в разбавленных растворах одинаковые по размерам статистические клубки  [c.40]

    Вторичная структура белковой молекулы - это конформация участков полипептидной цепи. Линейный полимер, первичная структура которого включает много шарнирных фупп и взаимодействие между боковыми радикалами в котором не очень велико, образует статистический клубок. Он не обладает определенной трехмерной структурой или формой, так как она постоянно изменяется под действием микроброуновского движения. Однако вследствие взаимодействия боковых заместителей аминокислотных звеньев макромолекулы белка способны свертываться в более плотный, чем статистический, клубок, в результате чего возникает компактная глобулярная структура белковой макромолекулы. [c.344]

    В табл. 6.7 приведены значения ДС для основных аминокислот (принимая в качестве среды переноса этанол). Поскольку глицин является основным звеном пептидной цепи, обеспечивающим ее конформационные переходы, возникновение конформаций, характерных для данной белковой молекулы, определяется природой боковых заместителей других аминокислотных звеньев, определяющих первичную структуру полипептида. [c.348]

    Вопрос. Какую первичную структуру должен иметь полиамид, чтобы он обладал свойствами эластомера  [c.133]

    Первичная структура этих белков варьируется в определенных пределах и зависит от природы шелкопряда, диеты, сроков выкормки шелковичных червей и других биологических факторов (см. табл. 6.8). Наибольшую массовую долю в макромолекуле фиброина занимают звенья Gly, Ala, Туг, Ser. Кроме того, в его состав входит небольшое количество (<1%) звеньев ys. Полипептидные цепи фиброина включают гидрофильные и гидрофобные аминокислотные звенья в соотношении 6,3 1. Последовательность аминокислотных звеньев в кристаллических областях полимерного субстрата может быть представлена в виде [c.375]

    Возможно также образование блоков одинаковых звеньев в сополимере. Вводится понятие числа блоков R. Значение R характеризует среднее число данных мономерных звеньев, которые находятся в одной статистической сополимерной цепи, состоящей из 100 мономерных звеньев. Например, имеется цепь, характеризующаяся следующей первичной структурой  [c.246]

    Типичными полярными и нейтральными боковыми радикалами обладают Ser, ys, Thr, Arg, Gin и Thr. Они способны образовывать внутри- и межцепные водородные связи. Эти звенья могут располагаться в макромолекуле белка как внутри, так и на поверхности глобулы. Звенья Asp и Glu, как правило, находятся также на поверхности частиц белков. Формирование вторичной структуры белка зависит как от особенностей первичной структуры, так и от внешних (влажность, pH, температура) условий. [c.342]

    Полимеры, полученные в результате ионной полимеризации, отличаются более регулярной первичной структурой, чем при свободнорадикальных процессах. [c.257]

    Биохимические и биофизические функции белков определяются не только их композиционным составом, но и особенностями первичной структуры (последовательностью звеньев и ДР-)- [c.337]


    Таким образом, при щелочном гидролизе может происходить не только деструкция полимерной цепи, но и изменение первичной структуры белка, о чем свидетельствуют данные, приведенные на рис. 6.11 [c.359]

    Очевидно, что вероятность обр ования заданной первичной структуры полипептидной цепи с Р = 100 при стохастических вариантах синтеза очень мала. В биологических системах могут реализоваться лишь наиболее вероятные первичные структуры макромолеку.п белка. [c.340]

    При производстве натурального шелка коконная нить (кокон) подвергается обработке горячей водой в присутствии поверхностно-активных веществ (ПАВ), в результате чего получают полупродукт - шелк-сырец. Последующая дополнительная гидротермическая обработка ( отварка ) его приводит к получению текстильного натурального шелка, содержащего 4-6% остаточного серицина. Исходя из особенностей первичной структуры фиброина и серицина (см. табл. 6.8), расскажите, какие основные физико-химические процессы происходят при получении натурального шелка. [c.343]

    Описать первичную структуру целлюлозы и амилозы. Почему эти два полимера различаются по физическим свойствам  [c.391]

    Селективность процесса определяется как способом инициирования, так и первичной структурой полимера. Природа свободнорадикальных центров, образующихся как на низко-, так и на высокомолекулярных компонентах реакции, генерируемых физическими или химическими методами, идентична. [c.373]

    Для упорядоченных (кристаллических) участков серицина первичная структура описывается статистическим распределением звеньев в виде [c.375]

    В обьиных условиях эта группа белковых веществ не растворяется в растворителях, используемых для растворения фибриллярных белков.. Особенностью первичной структуры белков, относящихся к группе кератинов, является относительно большое количество серосодержащих звеньев (Met, ys, yS - Sy ). [c.377]

    Первичная структура пептидных цепей инсу.тина (каждая аминокислота обоэначеиа первыми гремя буквами ее названия, например Г.тн - глицин, Ала - аланин. Вал -валин и г, ЛJ. [c.212]

    Первичная структура макромолекул кератина до настоящего времени не уточнена, что обусловлено химической неоднородностью белкового субстрата. а-Спиральные участки полипептидных цепей имеют протяженность около 100 А.  [c.380]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    Растворы большинства высокомолекулярных соединений, как было сказано, являются истинными. Однако значительные молекулярные массы и полидисперсность обусловливают нарушение термодинамической обратимости их свойств уже при малых концентрациях. Отличительной особенностью процесса растворения является набухание, предшествующее собственно растворению. В зависимости от первичной структуры полимера (наличия и природы боковых заместителей в звеньях полимерной цепи, регулярности строения макромолекулы) набухание может быть ограниченным и неофаниченным, т.е. завершающимся образованием раствора. [c.90]

    Так, для определения оптимальных параметров пористой структуры можно предложить следующую последовательность расчетов. Целесообразно начинать расчет, ориентируясь на биди-сперсную структуру. Если расчеты имеют предварительный характер, то их можно выполнить безотносительно к технологии изготовления катализатора. Если при расчете ориентироваться на определенную технологию формирования гранул, то необходимо учитывать взаимосвязь между пористостью и средним радиусом пор, образующихся при формировании гранул. Пористость и средний радиус пор первичной структуры определяются технологией приготовления порошка, исходного для формирования гранул. Параметром оптимизации является относительная пористость X = е /е (ё — пористость узких пор, г — пористость катализатора). [c.168]

    Таким образом, различная доступность связей - ONH- гидролитическому распаду определяется преимущественно особенностями первичной структуры макромолекулы. Это явление позволяет решать задачи выбора специфических деструктирую-щих реагентов, способных селективно разрывать пептидные связи между определенными аминокислотными звеньями. Наиболее подходящими в этом отношении являются гидролитические ферменты. Например, фермент трипсин разрывает связь ONH- практически исключительно между Arg и Lys. Другой фермент, химотрипсин, разрывает пептидные связи преимущественно между звеньями, имеющими ароматические ядра (например, между Туг и Phe). [c.360]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    В процессе формирования в жидкой фазе структур и в результате их роста в газовой фазе несколько частиц сращиваются по поверхности касания в единый агрегат с достаточно высокой прочностью. Адгезию сажевых частиц друг с другом называют первичной структурностью сажи. В результате высокой степени дисперсности таких структур они склонны к дальнейшему агрегированию с образованием вторичных структур, прочность связей в которых значительно меньше и обусловлена в основном силами межмолекулярного взаимодействия между первичными структурами. В практических условиях способность к образованию вторичных структур пспользуют при грануляции саж. Гранулированная сажа (размер частиц 0,5—2 мм), обладающая хорошей текучестью и транспортабельностью, не должна иметь слишком высокую прочность шариков, так как в этом случае распределение сажп в каучуке при смешении ухудшится. [c.135]

    Возникновение дальнего порядка во взаимном расположении макромолекул, т. е. способность к кристаллизации, определяется регулярностью сфоения полимерных цепей. Известно, что в макромолекуле элементарные звенья и заместители могут располагаться в определенной последовательности и быть определенным образом ориентированы в пространстве (изо-тактические, синдиотактические и другие типы полимеров, имеющих регулярную первичную структуру). Если же присоединение носит статистический характер (наряду с присоединением по типу голова к хвосту присоединение голова к голове или хвост к хвосту ), а заместители не имеют преимущественной ориентации в пространстве, то такие полимеры имеют нерегулярное строение и относятся к группе атактических. Полимеры этого типа могут находиться только в аморфном состоянии. [c.142]

    Формование волокон из кристаллизующихся гибкоцепных полимеров осуществляется экструзией расплава через отверстия фильер с последующим многократным растяжением остывающих на воздухе струек. Почему свежесформованные с одинаковой скоростью (например, 1000 м/мин) волокна равной толщины, но с различной первичной структурой обладают разной степенью кристалличности Сопоставьте степень кристалличности волокон, сформованных в идентичных условиях на основе полипропилена, поликапроамида и полиэтилентерефталата. [c.160]

    Комплекс физико-химических свойств природных волокнообразующих полимеров обусловлен первичным, вторичным и более высокими уровнями их структурной организации. Каждый из полимеров, представляющий интерес как волокнообразующий (целлюлоза, хитин, фибриллярные белки), имеет определенное биофункциональное назначение. Особенность биосинтетических процессов такова, что первичная структура макромолекул этих полимеров формируется как регулярная, несмотря на возможность случайного включения в них "дефектных" звеньев. Регулярность строения полимерных цепей предопределяет возможность их самоупорядочения (кристаллизации). Параметр гибкости макромолекул природных волокнообразующих полимеров /ф несколько больше 0,63, что позволяет отнести их к полужесткоцепным полимерам. [c.288]

    Задача. Каждый вид белка в живом организме несет определенную фукцио-нальную нагрузку. Вместе с тем все белки отличаются друг от друга своей первичной структурой, т. е. относительным содержанием и порядком чередования [c.337]

    Ответ. В процессе гидротермических обработок ( размотка коконов, отварка шелка-сырца) происходит количественное удаление из нити жировосковых веществ и значительной части водорастворимого белкового компонента - серицина, первичная структура которого характеризуется увеличенным содержанием аминокислотных звеньев с гидрофильными боковыми радикалами Ser, Asp, Glu, Thr, Lis. Экстракция серицина происходит в условиях интенсивного набухания полимерного субстрата. [c.343]

    Огромное чйсло взаимных сочетаний а-аминокислотных звеньев в полипептидной цепи, обусловливаюших первичную структуру белка, предопределяет возможность сушествования очень большого разнообразия белков и специфичность их функций. Однако первичная структура белка, обладающая специфическими функциональными свойствами (например, фибриллярные белки), в процессе биосинтеза воспроизводится достаточно точно, что обусловливает возможность жизнедеятельности организмов. Ранее уже отмечалось, что конформационные переходы в полипептидной цепи могут осуществляться в основном в результате вращения вокруг СН2-группы Gly, ифающей роль шарнира. [c.344]

    Натуральный шелк представляет собой нить, полученную размоткой коконов шелкопряда в условиях интенсивного набухания при гидротермических обработках. Получаемая таким образом нить характеризуется сложным морфологическим строением два фиброиновых стержня соединяются в единую нить с помощью серициновой прослойки. После дополнительного удаления серицина до содержания его 20-25% коконная нить превращается в шелк-сырец, а при более глубокой отмывке (до 4-5%) - в натуральный шелк. В зависимости от своих функций (формирования армирующей основы шелка - фиброиновых стержней или обеспечения связи между ними) полипептидные цепи имеют первичную структуру, включающую большее (в фиброине) или меньшее (в серицине) количество гидрофобных аминокислотных звеньев, но четкое различие между этими белками отсутствует (рис.6.12). Связь между ними обеспечивается проходными цепями, дисульфидными и сложноэфирными мостиками, межмолекулярными водородными связями, а также через небелковые фрагменты, например через монозы. [c.376]

    Несмотря на различия в первичной структуре, белковые компоненты шерсти объединяются в группу кератинов, средний состав которых приведен в табл. 6.8. Кератины подразделяют на две подгруппы, не имеющие четкой границы эукератины и псевдокератины, - характеризущиеся различным содержанием цикло- и серосодержащих звеньев, а также различной плотностью упаковки структурных элементов в полимерном субстрате. [c.379]

    Коллаген - это наиболее распространенный фибриллярный белок позвоночных животных. На его долю приходится 50% сухой массы и около 30% твердого вещества костей. В биологических системах коллаген присутствует в виде пучков волокнистых структур, по прочности на разрыв соизмеримых со стальной проволокой. Первичная структура коллагена характеризуется высоким содержанием звеньев Gly (1/3), а также Pro и Hypo (1/3) (см. табл. 6.8). [c.380]


Смотреть страницы где упоминается термин Первичная структура: [c.295]    [c.340]    [c.343]    [c.379]   
Смотреть главы в:

Аминокислоты Пептиды Белки -> Первичная структура

Ферментативный катализ -> Первичная структура

Фермент пероксидаза Участие в защитном механизме растений -> Первичная структура

Биофизическая химия Т.1 -> Первичная структура

Биофизическая химия Т.1 -> Первичная структура

Биофизическая химия Т.1 -> Первичная структура

Основы биохимии в 3-х томах Т 1 -> Первичная структура


Аминокислоты Пептиды Белки (1985) -- [ c.86 , c.358 , c.363 ]

Биологическая химия (2002) -- [ c.31 ]

Биохимия (2004) -- [ c.0 ]

Биоорганическая химия (1987) -- [ c.0 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.138 , c.158 , c.172 ]

Стереохимия углеводов (1975) -- [ c.57 ]

Молекулярная генетика (1974) -- [ c.83 , c.91 , c.99 , c.101 , c.113 ]

Гены (1987) -- [ c.0 ]

Физическая Биохимия (1980) -- [ c.16 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.37 ]




ПОИСК







© 2025 chem21.info Реклама на сайте