Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистоновый кор

Рис. 9-23. Строение нуклеосом. Нуклеосомные частицы состоят из двух полных витков ДНК (83 нуклеотидных пары на виток) закрученных вокруг кора, представляющего собой гистоновый октамер, и соединяются между собой линкерной ДНК. Нуклеосом-ная частица выделена из хроматина путем ограниченного гидролиза линкерных участков ДНК микрококковой нуклеазой. В каждой нуклеосомнои частице фрагмент двойной спирали ДНК, имеющий в длину 146 пар оснований, закручен вокруг гистонового кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. Полипептидные цепи гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая бусина связана с соседней частицей нитевидным участком Рис. 9-23. Строение нуклеосом. <a href="/info/101783">Нуклеосомные частицы</a> состоят из <a href="/info/1696521">двух</a> полных витков ДНК (83 <a href="/info/101786">нуклеотидных пары</a> на виток) закрученных вокруг кора, представляющего <a href="/info/1795776">собой</a> <a href="/info/33170">гистоновый октамер</a>, и соединяются между <a href="/info/1795776">собой</a> линкерной ДНК. Нуклеосом-ная частица выделена из хроматина <a href="/info/1062628">путем ограниченного</a> гидролиза линкерных участков ДНК <a href="/info/33140">микрококковой нуклеазой</a>. В каждой нуклеосомнои <a href="/info/1888207">частице фрагмент</a> <a href="/info/1016243">двойной спирали</a> ДНК, имеющий в длину 146 пар оснований, закручен <a href="/info/1868946">вокруг гистонового</a> кора. Этот белковый кор содержит по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4. <a href="/info/31816">Полипептидные цепи</a> гистонов насчитывают от 102 до 135 аминокислотных остатков, а общий вес октамера составляет приблизительно 100000 Да. В деконденсированной форме хроматина каждая бусина связана с соседней частицей нитевидным участком

    Вернемся, однако, к гистоновому кору нуклеосомы, главному [c.110]

    При репликации двухцепочечная ДНК должна разойтись на индивидуальные цепи с тем, чтобы каждая из них могла функционировать в роли матрицы. Разделению цепей ДНК содействуют молекулы специфических белков, стабилизирующих одноцепочечную структуру при продвижении репликационной вилки. Стабилизирующие белки стехиоме-трически связываются с одиночной цепью, не мещая при этом нуклеотидам выступать в роли матрицы (рис. 38.18). Наряду с разделением цепей должно происходить и раскручивание спирали (1 оборот на каждые 10 нуклеотидов), сопровождаемое скручиванием вновь синтезированных дочерних цепей. Учитывая время, за которое происходит репликация у прокариот, можно рассчитать, что молекула ДНК должна раскручиваться со скоростью 400 ООО об/сек, что совершенно невозможно. Следовательно, должны существовать множественные шарниры , расположенные по всей длине молекулы ДНК. Шарнирные функции выполняет специальный фермент (ДИК-топоизомераза), вносящий разрывы в одну из цепей раскручиваемой двойной спирали. Разрывы быстро зашиваются этим же ферментом без дополнительных энергетических затрат, поскольку необходимая энергия запасается в форме макроэргической ковалентной связи, возникающей между сахарофосфатным остовом цепи ДНК и топоизомеразой. Представленную на рис. 38.19 схему этого процесса можно сравнить с последовательностью событий сшивания разрыва в ДНК, катализируемых ДНК-лигазой. ДНК-топоизомеразы ответственны также за раскручивание суперспирализованной ДНК. Су-перспирализованная ДНК — это высокоупорядоченная структура, образуемая кольцевыми или сверх-длинными молекулами ДНК при закручивании вокруг гистонового кора (рис. 38.20). [c.78]

    Ранее, при рентгеноструктурном анализе целой нуклеосомы было показано, что правая двойная спираль ДНК закручена, вокруг гистонового кора в виде левой суперспирали с внутренним диаметром 70 А и длиной 55 А [404, 409, 412]. Это нашло подтверждение в исследовании структуры изолированного октамера, на поверхности которого была обнаружена бороздка белковой суперспирали [417, 418]. Она имеет внешний диаметр 65 A, шаг 28 А и левую закрутку, что полностью отвечает параметрам суперспирали ДНК в нуклеосоме. Таким образом, поверхности гистонового кора и закручиваемой вокруг него двойной спирали ДНК соотносятся между собой так же, как поверхности винта и гайки. Между тем, образование нуклеосомы вряд ли представляет собой ввинчивание белкового октамера в строго детерминированную нуклеотидную структуру. Этому препятствуют, во-первых, наличие на спиральной бороздке нуклеосомного сердечника чередующихся возвышений и впадин и, во-вторых, то обстоятельство, что суперспираль молекулы ДНК в свободном состоянии не является стабильной формой, хотя, по-видимому, и относится к низкоэнергетическим конформациям. Более вероятно, что образование нуклеосомы происходит путем накручивания лабильной двойной спирали ДНК на [c.111]


    Б. Если продлить время обработки ядер нуклеазой так, чтобы разрушились большие участки ДНК, то практически каждый линкер-ный участок будет надрезан, а вся линкерная ДНК расщеплена на небольшие фрагменты. Оставшаяся ДНК (т. е. входящая в состав нуклеосом) должна будет дойти до самого конца геля. На самом деле когда ставят такой эксперимент, то ДНК располагается в зоне, соответствующей длине фрагментов примерно в 140 нуклеотидов. Именно такой размер имеет структура ДНК, уложенной витками вокруг гистонового кора и образующей нуклеосому. Этот результат свидетельствует о том, что длина линкерной ДНК в хроматине из печени крысы составляет примерно 60 нуклеотидов. [c.389]

    Мономерные нуклеосомы содержат ДНК ( 200 п. н.), связанную с гистоновым октамером. Этот октамер содержит гистоны Н2А, Н2В, НЗ и Н4-по две копии каждого. Иногда их называют гистоновой сердцевиной (гистоновым кором). Такие комплексы схематически изображены на рис. 29.3. [c.360]

    Структура гистонового кора нуклеосомы. Гистоны объединяют пять разновидностей небольших структурных белков Н1, Н2А, Н2В, НЗ и Н4, аминокислотные последовательности которых содержат соответственно 220, 128, 124, 134 и 102 остатков. Они обеспечивают плотную упаковку двойной спирали ДНК, которая в растянутом состоянии имеет большую длину. Например, в каждой хромосоме человека она составляет в среднем около 5 см. Поэтому компактизация ДНК с помощью гистонов необходима прежде всего для упорядоченного расположения длинной двухцепочечной полинуклеиновой кислоты в небольшом объеме клеточного ядра. Однако не только для этого характер упаковки ДНК влияет на активность соответствующих участков генома. Следовательно, его гистоновая структурная организация является одним из способов регуляции и контроля транскрипции РНК с ДНК. Аминокислотные последовательности гистонов содержат около четверти положительно заряженных остатков Lys и Arg, что позволяет им эффективно связываться с двойной спиралью ДНК, независимо от ее нуклеотидного состава. [c.109]

    Гистоны составляют около половины массы хромосомы, где они участвуют в организации нескольких уровней упаковки двойной спирали ДНК. Вместе с другими белками гистоны образуют с ДНК комплексы, названные хроматином. Впервые Р. Корнберг в 1974 г. выделил повторяющуюся структурную единицу хроматина и вместе с Дж. Томасом установил, что она состоит из белковой сердцевины октамерного кора, содержащего по две молекулы каждого из гистонов Н2А, Н2В, НЗ и Н4, и фрагмента двойной спирали ДНК [402, 403]. Р. Симпсон предположил, что двухцепочечная ДНК закручена вокруг гистонового кора и образует два витка суперспирали из 165 пар оснований [404]. Позднее эта цифра была исправлена А. Клагом и соавт. на 146 [405]. Обнаруженная структурная единица хроматина получила название нуклеосомы [406]. Исследования гистонового кора с помощью различных физико-химических методов показали, что октамер представляет собой гетерогенный белковый ансамбль (Н2А-Н2В-НЗ-Н4)2, состоящий из трех структурных субъединиц тетрамера (НЗ-Н4)2 и двух димеров (Н2А-Н2В). Двойная спираль ДНК в хроматине тянется как непрерывная нить от одной нуклеосомы к другой. Расположенные между нуклеосомами линейные линкерные участки ДНК имеют разную длину, которая обычно невелика и в среднем составляет 60 нуклеотидов. Нуклеосомная нить определяет более высокие уровни компактизации хроматина. В конечном счете, он предстает в электронном микроскопе в виде так называемой ЗОнм-хроматиновой фибриллы. [c.110]

    За укладку нуклеосомной нити в составе хроматиновой фибриллы отвечает гистон Н1. Центральная часть его молекулы представляет собой глобулу, которая взаимодействует со специфическим участком нуклеосомы. М- и С-концевые фрагменты белка имеют вытянутые формы. Один из них (М-) ассоциирован с предшествующей линкерной ДНК в области ее контакта с нуклеосомной частицей, а другой - с гистоновым кором последующей нуклеосомы. Кроме того, замечено, что свободная молекула Н1 легче взаимодействует с ДНК в непосредственной близости от другой, уже присоединившейся молекулы гистона, чем отдельно от нее [407]. Этим обусловлена склонность белков Н1 связываться с ДНК группами по восемь и более молекул. Предполагается, что взаимодействие такого типа, названное кооперативным связыванием, лежит в основе активации генов. Вызванная им конденсация молекул гистона Н1 превращает некоторые хроматиновые участки в своеобразные микрокристаллы, "плавление" которых под действием внешнего регуляторного сигнала ведет к разрушению гистонового кластера и локальной перестройке хроматина [401, 408]. [c.110]

    Некоторым авторам трехмерная структура гистонового кора напоминает плоский диск, другим шпильку или катушку, третьим клин. При таком разновидении ясно лишь одно - структура октамера достаточно сложна и не имеет прямых аналогий. Более детальное обсуждение геометрии комплекса (Н2А-Н2В-НЗ-Н4)2 может опираться только на результаты последующих исследований, так как они получены с разрешением 3,1 A, уже позволяющим идентифицировать конформационные состояния аминокислотных остатков и даже отдельных боковых цепей [417, 418]. [c.111]

    В связи с установлением трехмерной структуры гистонового октамера (Н2А-Н2В-НЗ-Н4)2 и его стерических взаимоотношений с ДНК встает ряд вопросов принципиального порядка. Например, каковы механизмы и причины спонтанного возникновения белкового комплекса и самосборки нуклеосомы в целом Не менее интересен и вопрос о том, каким образом происходит освобождение нуклеотидной цепи от гистонового кора Дело в том, что доступность ДНК, входящей в состав нуклеосом, существенно ограничена на тех участках, где двойная спираль соприкасается с поверхностью октамера. Присоединение специфических регуляторных белков к функционально активным нуклеотидным последовательностям становится возможным только при освобождении соответствующих участков связывания ДНК от нуклеосом. Поэтому выяснение причины распада нуклеопротеиновых комплексов столь же важно, как и исследование причины их возникновения. Можно полагать, что после того, как механизм создания и разрушения нуклеосом получит свою количественную трактовку, будет решен и один из наиболее интригующих вопросов, касающихся гистоновых белков, а именно, почему гистоны Н2А, Н2В, НЗ и Н4 в отношении своих аминокислотных последовательностей являются самыми консервативными в природе белками (табл. 1.7) Не исключено, что нуклео-сома представляет собой уникальную по своей структурной организации клеточную субъединицу. Из общих соображений очевидно, что в ней должны сочетаться идеальная согласованность внутри- и межмолекулярных взаимодействий белков, образующих гистоновый октамер, комплементарность поверхности нуклеосомного кора контактной поверхности суперспирали ДНК и в то же время наличие тонкого баланса сил противоположной направленности, нарушение которого при соответствующих изменениях внешних условий ведет к быстрому смещению равновесия в сторону возникновения или распада нуклеопро-теинового комплекса. Консервативность гистонов Н2А, Н2В, НЗ и Н4 указывает на то, что нормальное функционирование такой системы практически исключает аминокислотные замены. [c.112]



Смотреть страницы где упоминается термин Гистоновый кор: [c.363]    [c.112]    [c.111]    [c.112]    [c.419]    [c.353]    [c.112]    [c.113]    [c.130]   
Биохимия человека Т.2 (1993) -- [ c.78 ]

Биохимия человека Том 2 (1993) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилаза гистоновая

Гистоновые гены

Гистоновые гены консервативность кодирующих последовательностей и различия в организации

Гистоновые клонирование

Гистоновые морского ежа

Гистоновые свойства

Гистоновые сцепление

Гистоновые тандемные повторы

Гистоны также Гистон Гистоновые гены

ДНК закручена вокруг гистонового октамера

ДНК-гистоновые комплексы образуют похожие на бусинки нуклеосомы

ДНК-гистоновый комплекс

Деацетилаза гистоновая

Дрожжи гистоновые гены

Киназы гистоновые

Октамер гистоновый

Фракционирование гистоновых белков печени крысы — Бесклеточная микросомная система биосинтеза коллагена и других белков — А. Е. Берман



© 2025 chem21.info Реклама на сайте