Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модифицированные полиолефиновые волокна

    Суммируя, можно сделать вывод, что привитой сополимериза-цией можно значительно улучшить некоторые практически важные свойства полиолефиновых волокон (накрашиваемость, гигроскопичность, светостойкость) и получить модифицированные волокна, которые могут быть. эффективно использованы, например, в качестве ионообменных. Однако специфические затруднения, возникающие при прививке к стабилизированным полиолефиновым волокнам, значительно ограничивают возможность широкого использования этого метода модификации. [c.291]


    Многие карбоцепные полимеры широко используются для получения волокон. Из этих полимеров вырабатывают полиакрилонитрильные, поливинилхлоридные, поливинил спиртовые, полиолефиновые и полифтор-этиленовые волокна. Из сополимеров (главным образом на основе акрилонитрила), смесей полимеров и привитых сополимеров получают многочисленные модифицированные волокна. [c.7]

    Несмотря на то что существует много различных приемов крашения модифицированных и немодифицированных полиолефиновых волокон дисперсными и другими. красителями, основным промышленным способом крашения этих волокон остается способ крашения в массе. Красители, пригодные для крашения, готовят смешением полиэтиленовой эмульсии с соответствующим пигментом. Водную дисперсию наносят на полимер, и при последующем удалении растворителя пигмент прочно фиксируется в сформованном волокне. [c.229]

    Привитые сополимеры полиолефиновых волокон с полиакриловой кислотой и с полиметилвинилпиридином обладают высокими ионообменными свойствами. Учитывая высокую хемостойкость полиолефиновых волокон и их стойкость к агрессивным веществам, можно предположить, что эти модифицированные полиолефиновые волокна могут представить значительный интерес в качестве ионообменных волокнистых материалов с высокоразвитой поверхностью, особенно в условиях, в которых более доступные ионообменные волокна (целлюлозные) не могут быть применены (например, при улавливании ценных и редких металлов из сильнокислых растворов). [c.290]

    Полиолефиновые волокна являются кристаллическими, высокоориентированными системами ориентация достигается главным образом в результате применения больших ориентационных вытяжек свежесформованного волокна. При осуществлении прививки к готовому волокну привитые компоненты не подвергаются вытягиванию, поэтому они во многих случаях являются аморфными и неориентированными вдоль оси волокна. В связи с этим при большом содержании привитого компонента снижается суммарное содержание кристаллической фракции и степень ориентации волокна. В условиях проведения привитой полимеризации в ряде случаев может происходить частичная дезориентация элементов структуры волокна и, как следствие, некоторое ухудшение механических свойств модифицированного волокна по сравнению с исходным волокном. Если прививку к волокну осуществлять перед вытягиванием и затем подвергать вытягиванию модифицированное волокно, то ориентации будут подвергаться также привитые компоненты, и механические свойства такого волокна должны значительно улучшаться. Однако практическое осуществление прививки таким способом гораздо сложнее. Кроме того, остается неясным влияние привитых компонентов на ориентацию и кристаллизацию (или рекристаллизацию) самих полиолефинов. Исследования в этом направлении не проводились. [c.226]


    Армирующие материалы. Смолы часто армируют различными волокнистыми материалами, чтобы получить прочную композицию, обладающую повышенными эксплуатационными показателями в условиях абляции. Для этой цели используют разнообразные армирующие компоненты, которые сильно отличаются по химическому составу и физическому состоянию. Наиболее широко распространенные армирующие волокна относятся к классу неорганических окислов. Типичные композиции включают Е-стекло, обработанное кислотами стекло, кремнезем и кварц. В последнее время были синтезированы волокна из огнеупорных окислов циркония, титана и тория, однако подробные данные об их абляционных характеристиках еще отсутствуют. К армирующим материалам относятся также минеральный асбест и родственные ему силикатные композиции. В общем, хризотиловый и кроцидолитовый виды асбестового волокна обладают почти одинаковыми абляционными характеристиками. Однако хризотиловое волокно отличается некоторым преимуществом благодаря своей относительно более широкой распространенности. Природные и химические волокна органического происхождения составляют третью группу армирующих материалов. Число различных видов волокон, используемых в настоящее время, очень велико. К ним относятся такие разновидности, как льняное, хлопковое, вискозное, полиамидное, полиакриловое, полиэфирное, полиолефиновое, модифицированное полиакриловое, фтор углеродное, виниловое, ацетатное и другие волокна. Из них наиболее часто применяется найлон. Огнеупорные волокна для весьма высокотемпературных абляционных материалов также привлекают внимание. В настоящее время синтезированы в ограниченных количествах углеродное, графито-вое , пирографитовое и борное волокна. Точно так же получены очень тонкие металлические нити из огнеупорных маталлов для армирования композиций абляционных пластмасс. [c.436]


Смотреть страницы где упоминается термин Модифицированные полиолефиновые волокна: [c.213]   
Полиолефиновые волокна (1966) -- [ c.249 , c.257 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Модифицированные полиолефиновые

Полиолефиновые волокна

Свойства полиолефиновых волокон, модифицированных методом привитой полимеризации

полиолефиновая



© 2025 chem21.info Реклама на сайте