Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практическое осуществление термического крекинги

    К числу важнейших задач, поставленных перед нефтеперерабатывающей промышленностью СССР, относится углубление переработки нефти с целью получения максимального выхода моторных топлив высокого качества и сырья для нефтехимического синтеза. Одним из наиболее распространенных процессов, обеспечивающих эффективное решение этих проблем, является каталитический крекинг флюид (ККФ). Это обусловливается следующими его достоинствами осуществление процесса при низком давлении и в аппаратах простой конструкции наличием значительных ресурсов сырья, начиная с керосино-газойлевой фракции и кончая гудроном высокими выходами (до 90%) ценных продуктов высокооктанового бензина, легкого газойля-компонента дизельных топлив, сжиженных газов -сырья для производства метил-третичного бутилэфира (МТБЭ) и алкилатов, тяжелого газойля - сырья для производства технического углерода, игольчатого и электродного кокса возможностью повышения мощности установок и их блокирования с другими возможностью удовлетворительного решения проблем безостаточной переработки нефти и охраны окружающей среды более высоким по сравнению с термическим крекингом качеством продуктов. В продуктах ККФ практически отсутствуют сухие газы (С1 и Сг), промежуточные продукты реакций уплотнения (например, смолы, асфальтены и карбены, образующие крекинг-остаток), меньше непредельных, больше парафиновых углеводородов изомерного строения, ароматических углеводородов и кокса, бедного водородом. Это свидетельствует о более глубоком протекании реакций распада, изомеризации и перераспределении водорода. Бензин обогащается водородом за счет ароматизации средних фракций и образования кокса, весьма бедного водородом. [c.102]


    Некондиционные олигомерные продукты можно использовать непосредственно, например в качестве смазывающих веществ (в буксах колесных пар железнодорожных вагонов), герметизирующих составов (в строительстве) и т.д. Но в общем случае технологические отходы олигомеров изобутилена должны перерабатываться простым и экономичным методом. Одним из основных способов переработки отходов является пиролиз (деполимеризация) полимерных продуктов с целью получения изобутилена [56-58]. Невысокая теплота полимеризации изобутилена (72 кДж/моль) служит термодинамическим обоснованием целесообразности осуществления таких процессов. Менее экономичны, хотя и достаточно распространены, способы газификации и сжигания. Вторичная переработка ПИБ, как и многих других полимеров, сжиганием (газификацией) проводится с целью рекуперации энергетических затрат [57, 58]. Для сжигания используют самые различные аппараты, принцип работы которых основан на распылении сжигаемого полимера в топливных камерах в присутствии окисляющего агента (кислорода). Получающуюся тепловую энергию используют для выработки пара, отопления жилых и производственных зданий, теплиц, парников и др. Заслуживают внимания методы термического разрушения высокомолекулярных ПИБ до низкомолекулярных продуктов типа олигомеров, масел и тому подобных, полностью исключающих образование газообразных веществ. Контролированием температуры крекинга в реакторе по отдельным зонам достигается практически 100%-ная конверсия сырья - от отходов до конечных продуктов любой молекулярной массы и состава. Одним из способов разрушения отходов ПИБ является фотолиз полимерных продуктов до смеси низкомолекулярных продуктов изобутилена, диизобутилена и насыщенных углеводородов [59 . [c.349]

    Д. ПРАКТИЧЕСКОЕ ОСУЩЕСТВЛЕНИЕ ТЕРМИЧЕСКОГО КРЕКИНГА [c.235]

    При осуществлении термического крекинга помимо газов и жидких продуктов образуется остаток, который может служить сырьем для получения многих практически ценных материалов, в том числе и углеродных адсорбентов. Сырьем для термического крекинга служат прямогонные и вторичные газойлевые фракции, от состава и свойств которых зависят выбор параметров крекинга и качество крекинг-остатка. При увеличении степени ароматичности исходных газойлей увеличивается таковая для крекинг-остатков. [c.582]

    В настоящее время данный процесс осуществляется двумя способами (методами) термическим (гомогенное гидродеалкилирова-ние) и каталитическим (гетерогенное гидродеалкилирование). Преимуществом термического ведения процесса, помимо отсутствия катализатора, является также высокая производительность реакционного объема, в 4—4,5 раза [7] превышающая производительность, достигнутую в каталитическом процессе, однако при значительно более высокой температуре —700° С. Кроме того, процесс из сменноциклического, включающего рабочий цикл и регенерацию катализатора, становится непрерывным. Несмотря на это, с точки зрения практического осуществления процесса, при современном уровне развития техники наибольший интерес представляет каталитический способ ведения процесса. Это связано, с одной стороны, с тем, что он требует менее жестких условий реакции и, с другой сторойы, с тем, что образующиеся продукты крекинга гидрируются быстрее, благодаря чему снижается выход полициклических побочных продуктов и смолы, [c.186]


    Для всех обратимых эндотермических реакций при увеличении температуры сверх определенного предела равновесие реакции смещается слева направо, т. е. в сторону образования продуктов реакции. Такие реакции можно назвать высокотемпературными. Для большинства реакций синтеза (гидрирование, алкилирование, полимеризация), являющихся экзотермическими, наблюдается обратная картина, поэтому их называют низкотемпературными. Термическое разложение углеводородов начинается при 380—400 °С. С увеличением температуры скорость крекинга быстро растет. Повышение температуры крекинга при постоянном давлении приводит к повышению содержания легких компонентов, к снижению выхода тяжелых фракций и кокса, причем растет содержание в газе непредельных углеводородов. Для практического осуществления термических процессов требуется, чтобы они протекали с достаточной скоростью и при этом достигалась высокая степень превращения и избирательность. Для увеличения скорости реакции при жидкофазном термическом крекинге и коксовании нефтяного сырья температуру повышают до 470—550 °С, парофазный процесс ведут при температуре более 550 °С, пиролиз —при 700—900 °С. Выход газа в этих условиях заметно увеличивается, растет содержание в нем олефиновых углеводородов. [c.234]

    Д.1я непрерыилых процессов характерна длительная работа реактора нрн постоянном (или практически постоянном) режиме, непрерЫБПой равномерной подаче сырья и непрерывном выводи всех продуктов. Стационарный режим реактора обеспечивается непрерывным подводом тепла (термические процессы) или непрерывной регенерацией катализатора в отдельном аппарате — регенераторе (каталитический крекинг). Другим вариантом осуществления непрерывного каталитического процесса является создание режима в реакторе, препятствующего дезактивации катализатора (каталитический риформинг). [c.83]

    V. ПРАКТИЧЕСКОЕ ОСУЩЕСТВЛЕНИЕ ИЗОМЕРИЗАЦИИ ДВОЙНОЙ СВЯЗИ ДЛЯ ПОВЫШЕНИЯ ОКТАНОВОГО ЧИСЛА МОТОРНОГО ТОПЛИВА, СОДЕРЖАЩЕГО ОЛЕФИНЫ И ПОЛУЧЕННОГО ТЕРМИЧЕСКИМ КРЕКИНГОМ ВЫСОКОМОЛЕКУЛЯРНЫХ ФРАКЦИЙ НЕФТИ [c.713]

    В СВЯЗИ С необходимостью дальнейшего углубления переработки нефти особую значимость приобретают процессы термической конверсии остаточных и отработанных нефтепродуктов, которые позволяют в зависимости от способа осуществления процесса получать дополнительное количество светлых дистиллятов либо продукты с новыми качественными характеристиками. Одним из возможных направлений термической конверсии нефтяного сырья является термолиз. Отличие термолиза от термического крекинга заключается в создании условий для проявления в реакционной массе не деструкции высокомолекулярных компонентов сырья с выделением продуктов разложения, а преимущественно процессов поликонденсации, уплотнения и других конфигурационных превращений. При этом из системы не удаляются продукты реакций. Таким образом, выход конечного продукта при термолизе количественно практически соответствует исходному сырью. [c.161]

    Несмотря на широкое промышленное развитие процессов термического разложения нефтепродуктов, наши сведения о механизме и кинетике процессов термического разложения углеводородов не являются достаточно полными. При практическом осуществлении высокотемпературного пиролиза приходится иметь дело не с конечным равновесием, а с промежуточными состояниями. Но поскольку этот процесс характеризуется одновременным параллельным распадом исходных углеводородов до водорода и углерода и крекингом продуктов [c.53]

    Проведенные исследования показали, что применение присадок в процессе термического крекинга (висбрекинга) позволяет значительно улучшить технико-экономические показатели этих установок и завода в целом, а использование в качестве присадок таких, по сути дела, отходов производства, как названные выше продукты, не вызовет больших затруднений при внедрении этого метода в промышленность. Следует добавить, что осуществление этого мероприятия уже практически начато на ряде нефтеперерабатывающих заводов Средне-Волжского экономического района, где перерабатываются тяжелые высокосернистые нефти типа арланской. [c.123]

    Применение катализаторов позволяет значительно повысить избирательность дегидрирования по сравнению с термическими реакциями, при которых протекает сравнительно интенсивный крекинг. Каталитическое дегидрирование алканов протекает при значительно более низкой температуре, чем неизбирательное термическое дегидрирование. В присутствии рационально выбранного катализатора при соответствующих условиях процесса достигается высокая избирательность реакции дегидрирования с минимальным образованием газов расщепления и кокса. Очевидно, что выбор катализатора играет решающую роль при осуществлении процесса. Хотя избирательность катализатора и имеет первостепенное значение, с практической точки зрения важны и другие его свойства, такие, как активность, легкость регенерации и стабильность или долговечность при работе физическая форма, размеры, твердость и, разумеется, стоимость. [c.282]


    Гидрогенизационное облагораживание бензинов было одним из первых в СССР практически осуществленных методов катализа нефтепродуктов в среде водорода. Специально разработанный хромовый катализатор обеспечивал глубокое гидрооблагораживание бензинов термического крекинга. Тогда же были разработаны и изучены на модельных установках заводские схемы гидроочистки топлив и гидрокрекинга различных нефтепродуктов. На крупной пилотной установке удалось получить все данные, необходимые для проекгирования первой в СССР промышленной установки гидроочистки нефтяных дистиллятов [41]. В 1940 г. проект установки был завершен, но внедрить процесс в промышленность помешала отечественная война. [c.194]

    Работ по практическому осуществлению процессов термического крекинга для получения олефинов, содержащих пять и более атомов углерода, проведно и опуб- [c.20]

    Глубокий одноступенчатый крекинг мазута на активном синтетическом алюмосиликате, как показали проведенные нами исследования, совершенно ликвидирует фракции в области температур выше 350—400° С и создает значительный максимум в интервале температур ниже 300° С. Однако при осуществлении глубокого каталитического крекинга мазута получаются высокоароматизированные продукты при повышенном газо-и коксообразовании. Следует отметить, что глубина преобразования мазута определяется не только степенью активности катализатора, но и режимными параметрами ведения процесса. Так, например, как известно, при больших скоростях подачи сырья в кипящий слой катализатора можно обеспечить малую степень преобразования сырья даже на синтетическом высокоактивном алюмосиликатном катализаторе. При небольших весовых скоростях подачи сырья в кипящий слой (менее 1,5—2,0) и высоких скоростях циркуляции катализатора (более 8—10 весовых единиц катализатора на одну весовую часть сырья) можно получить в одну ступень значительные выходы автобензина. Однако при этом система перегружается коксом и процесс характеризуется интенсивным газообразованием, а также ароматизацией фракций кипящих до 350° С. Фракции кипящие выше 350° С также сильно ароматизированы и практически не пригодны к дополнительной переработке во второй ступени крекинга. Следует также отметить, что при этом в системе не обеспечивается устойчивое поддержание высокой активности катализатора, падение которой наступает за счет отравления его солями мазута, а также термической дезактивации в регенераторе из-за вспышек частиц, перегруженных коксом. Одно из исследований глубокого каталитического крекинга мазута было осуществлено при работе с рециркуляцией крекинг—газа. В качестве сырья был использован бакинский мазут, характеристика которого уже приводилась выше. Катализатором служил синтетический алюмосиликат с индексом активности 34 режим процесса определялся температурой в реакционной зоне 475° С, весовой скоростью подачи сырья 2 кг- кг час [c.57]


Смотреть страницы где упоминается термин Практическое осуществление термического крекинги: [c.80]   
Смотреть главы в:

Химия и технология моноолефинов -> Практическое осуществление термического крекинги




ПОИСК





Смотрите так же термины и статьи:

Крекинг термический



© 2025 chem21.info Реклама на сайте