Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители и армирующие компоненты

    Слоистые пластики состоят из двух основных компонентов — армирующего наполнителя (например, стекловолокнистого материала) и связующего, которое пропитывает наполнитель. Связующими, в частности, служат ненасыщенные [c.63]

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]


    Наполнители и армирующие компоненты [c.110]

    Свойства пластиков с твердым наполнителем определяются не только степенью наполнения и природой наполнителя и связующего, но также формой, размером и взаимным расположением частиц наполнителя. Высокая прочность материала достигается применением волокнистого наполнителя. Пластики, содержащие волокнистый наполнитель (органические, стеклянные, кварцевые, углеродные, борные волокна), названы волокнитами. Изменяя длину волокон и их взаимное расположение в связующем, меняют свойства материала и придают ему различную степень анизотропии. В тех случаях, когда удается расположить волокна в материале так, чтобы было обеспечено максимальное упрочнение в направлениях главных напряжений в нем, наполнитель выполняет функцию армирующего компонента — армированные пластики. [c.7]

    На эксплуатационные свойства абляционных пластмасс сильно влияют состав и структура материала. Для установления этой взаимосвязи проведены широкие теоретические и экспериментальные исследования, в результате которых определено влияние важнейших характеристик материалов. К ним относятся природа связующего, армирующего материала и наполнителя соотношение отдельных компонентов материала ориентация армирующих волокон или частиц наполнителей и условия переработки композиции в изделия  [c.432]

    Контроль акустических свойств композиционных материалов на основе алюминиевой матрицы. Одними из перспективных являются материалы, получаемые методом порошковой металлургии из дисперсных порошков пластичного металла (алюминия, титана или никеля) и твердой керамики (окиси алюминия, карбида кремния и др.), выполняющей роль армирующего компонента. Эти порошки смешивают и прессуют в формах в защитной атмосфере при давлении порядка 40 МПа и температуре 590. .. 600 °С. Сочетание пластичности металлической матрицы с твердостью и жесткостью армирующего керамического наполнителя придает материалу прочность и износостойкость. [c.797]

    В настоящее время существует большое количество разнообразных абляционных пластмасс. Их свойства и характеристики можно изменять в широких пределах, подбирая состав смолы, армирующий компонент или наполнитель. Пластмассы обладают низкой плотностью в интервале от 160 /сг/ж для пенопластов и до приблизительно 1920 кг м для стеклопластиков. Стоимость сырья, переработки и производства абляционных пластмасс сравнительно невысока, и с экономической точки зрения пластмассы превосходят другие теплозащитные материалы. [c.404]


    Влияние ориентации армирующего наполнителя. Абляционным пластмассовым композициям можно придать определенную анизотропию свойств ориентацией армирующего материала или наполнителя. Этот эффект особенно очевиден, когда физико-химические свойства отдельных компонентов композиции различаются в широких пределах. Исследования механических, теплофизических и абляционных характеристик фенольных стеклопластиков подтверждают это положение (табл, 10). [c.440]

    Свойства армированных пластиков. Свойства А. п. зависят от входящих в его состав компонентов и технологии переработки. Наличие армирующего наполнителя обусловливает структурную анизотропию А. п., с к-рой в металлах обычно не считаются. Эта анизотропия свойств наиболее четко выражена у слоистых пластиков и в изделиях из них, а также у материалов, получаемых методом намотки элементарного волокна, пряди, жгута или нити. У изделий, получаемых из волокнитов, анизотропия практически отсутствует. Вследствие особенностей строения А. п. их свойства [c.102]

    Механическая прочность и деформационные характеристики волокнистых армирующих компонентов намоточной структуры зависят от переменных факторов например, от концентрации и геометрического расположения нитей, длины и прочности наполнителя, степени пористости и распределения смолы. [c.273]

    Различают действие обычных дисперсных наполнителей и армирующих компонентов. Последнее начинает проявляться, если длины волокна не менее 200 мкм. Из органических волокнистых материалов в качестве наполнителя наиболее широко используют хлопок. Он является важнейшим наполнителем карбамидных пресс-материалов и может применяться в виде отходов текстильного производства, измельченного волокна, нитей и даже обрезков тканей. Широкое использование хлопка в качестве наполнителя обусловлено его физико-механическими и физико-химическими свойствами. Однако они значительно ухудшаются при контакте с водой. [c.48]

    Примерно в 1959 г. в статьях Вагнера и Селлерса [562] и Бахмана и др. [563] были исчерпывающим образом рассмотрены упрочняющие эффекты, вызываемые кремнеземами различных типов. Свойства были перечислены для осажденных и пирогенных кремнеземов и для аэрогелей, бывших доступными в то время, наряду с рассмотрением обширной библиографии. Было показано, что количество связанного каучука , отнесенное к единице массы наполнителя, характеризует армирующее действие последнего. Такой наполнитель вводится в измельченном виде в каучук при отсутствии каких-либо других присадок, и смесь нагревается при различных температурах. Растворимый компонент каучука после этого экстрагируется растворителем. Связанный каучук формируется по механизму образования свободных радикалов. [c.809]

    Следует отметить, что если современный уровень развития методов и средств контроля готовых изделий достаточно высок, то в отношении контроля технологических параметров полимерных материалов и изделий в процессе производства достижения еще незначительны. Наиболее важными технологическими параметрами, которые необходимо контролировать в процессе производства изделий, являются такие, как влажность всех компонентов, вязкость связующего, кинетика твердения, плотность материала на всех стадиях его изготовления, упругие и прочностные характеристики армирующего наполнителя и готового изделия, геометрические характеристики армирующего наполнителя (диаметр волокон, толщина слоев) и готовых изделий, а также наличие различных дефектов. [c.447]

    Таким образом, выбрав форму, размеры и материал наполнителя и проведя расчет по рассмотренным выще формулам, можно получить достаточно точные данные о том, из какого материала должен быть второй компонент конструируемого пластика. В большинстве случаев необходимо рассмотреть несколько возможных сочетаний, задаваясь каждый раз (кроме заданных характеристик конструируемого пластика) механическими характеристиками и объемным содержанием одного из компонентов (например, армирующих волокон) и рассчитывая соответствующие характеристики другого компонента. [c.31]

    Значение содержания компонентов в готовых изделиях закладывается как на стадии подготовки полуфабриката, т. е. в процессе смешения компонентов или нанесения связующего на армирующий наполнитель (ткань, ленту, волокно), так и в процессе изготовления изделия. [c.31]

    Однонаправленный армирующий наполнитель. Для простоты рассмотрим систему, состоящую только из двух компонентов матрицы и равномерно распределенных в ней волокон, уложенных [c.184]

    В соответствии с элементарной теорией изгиба гомогенных материалов модуль упругости при изгибе имеет такую же природу, как и модуль упругости при растяжении. Следовательно, формулы, выведенные ранее для расчета модуля упругости при растяжении с учетом объемных долей компонентов, должны быть справедливы и при расчете модуля упругости при изгибе. Однако следует учитывать ошибки, которые вытекают из негомогенности материала, как, например, в случае листовых стеклопластиков с покрытием из слоя отвержденной полиэфирной пасты или композиционных материалов со смешанным типом наполнителя, когда армирующий наполнитель состоит из компонентов с резко различной жесткостью. Так, для листового полиэфирного стеклопластика с хаотическим распределением волокон, имеющего на поверхности слой отвержденной полиэфирной пасты (гелевый слой), расчетный модуль упругости при изгибе на 7% меньше расчетного модуля упругости при растяжении (см. раздел 4.8.4). [c.188]


    Проводимость в идеальном композиционном материале, не имеющем пор, будет зависеть от коэффициентов проводимости компонентов непрерывной матрицы [км) и армирующего наполнителя кр, объемных долей матрицы (1—ф ) и волокон фр и пространственного распределения и ориентации армирующих волокон в матрице ф( )- Кроме того, эффективный коэффициент проводимости композиционного материала кс будет также зависеть от размеров волокна и степени анизотропии рассматриваемых свойств материалов волокна и матрицы. [c.288]

    Получение наполненных пластмасс. С целью повышения механической прочности, теплостойкости, снижения деформации изделий под нагрузкой в термопласты вводят армирующие наполнители — в основном стекловолокно, а также углеродные, графитовые и другие волокна. Количество наполнителя может составлять до 50% (масс.). Качество изделий из наполненных термопластов зависит от технологии введения наполнителя. При этом необходимо соблюдать ряд требований волокно не должно быть слишком измельченным, равномерно распределено и пропитано расплавом, из расплава должны быть удалены летучие компоненты и т. д. [c.195]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частнц дисперсной фазы. Чем анизо-метричнее форма частнц, тем при меньшей их концентрации образуется пространственная структура. Особенно эффективны в этом отношении волокнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на такой материал принимает на себя пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит кроме того, в качестве амортизатора. Прочностные, упругие и другие механические свойства пространственной сетки, безусловно, зависят от природы наполнителя, дисперсности и формы его частиц. Например, минеральные наполнители увеличивают жесткость материала, рост дисперсности волокон приводит к увеличению упругой деформации. Каучукоподобные наполнители придают материалу эластичность, ударную прочность. Большое значение для долгосрочной службы композиционных материалов имеет снятие внутренних напряжений, способствующих преждевременному разрушению материала. Если в бетонах внутренние наиряжения понижают с помощью вибрации прн твердении или добавлением ПАВ, то у металлов это достигается введением специальных модификаторов (обычно поверхностно-активных), в том числе гетерофазных включений. [c.393]

    Структура, свойства и применение. Б.-композиционный материал. Кроме разл. волокнистых армирующих компонентов, создающих непрерывную матрицу, Б. может содерц жать минеральные наполнители, придающие ей непрозрачность и повышающие белизну и гладкость, а также красители, полимерные связующие и др. Проклеивающие в-ва (канифольный клей и др.) предотвращают растекание чернил и туши по пов-сти Б. и их проникновение на противоположную сторону листа. Синтетич. смолы, латексы, [c.323]

    На основе фосфатных связок получают неорганические текстолиты из стекловолокнистого армирующего наполнителя. Однако кислая среда разрушающе действует на стекловолокно (кварцевое < кремнеземное < борное < алюмосиликатное < фосфатное). Обработка волокон и стеклотканей кремнийорганическими соединениями повышает их стойкость. Для стабилизации в стеклопластик вводят порошок кварца и AI2O3. Такой стеклопластик характеризуется прочностью при сжатии 80 МПа, а после 600 °С — 20 МПа [157]. Армирующим компонентом может служить асбестовая бумага. После формования изделия при давлении 10 МПа и отверждении при 240°С материал имеет прочность на изгиб 68 МПа (после 650 С — 16,7 МПа). Применяют неорганические текстолиты как материалы электротехнического назначения, а также в строительной технике. [c.140]

    Прочностные свойства резко возрастают за счет образования пространственной сетки из частиц дисперсной фазы. Чем анизометричнее форма частиц, тем при меньшей их концентрации формируется пространственная структура. Особенно эффективны в этом отношении во.юкнистые наполнители, широко используемые в качестве армирующего компонента. Основную часть механических нагрузок на материал с таким наполнителем принимает пространственная сетка из наполнителя, матрица передает эти нагрузки от частицы к частице, и если она мягче наполнителя, то служит, кроме того, в качестве амортизатора. [c.449]

    Стеклянное волокно нашло большое применение в электротехнике и радиотехнике, в производстве гибкой изоляции (стеклошпоны, стеклолакоткани, стеклобумаги, стек-лочулки) и слоистых пластмасс (стеклотекстолиты, стеклопластики, стекломаты). Оно используется как наполнитель, армирующий материал, придающий изделию высокую механическую прочность. Для электротехнических целей применяют стекловолокно из бесщелочного стекла, т. е. в шихте этого стекла содержится не более 2% щелочных компонентов. [c.224]

    Компоненты композитов не должны растворяться или иным способом поглощать друг друга. Они должны обладать хорошей адгезией и быть взаимно совместамы. Свойства КМ нельзя определить только по свойствам компонентов, без учета их взаимодействия. Каждая составляющая несет определенную функцию и вносит свой вклад в свойсгва композита. Рассмотрим требования, предъявляемые к армирующим наполнителям, например, к волокнам. [c.69]

    Аналогично составлена классификация методов переработки термореактивных материалов (рис. 4.2). В данном случае изготовление изделий может осуществляться из композиционных пресс-метериалов или из отдельных компонентов (жидких полимеров, наполнителей, армирующих материалов). [c.88]

    Наполнителями называют порошковые или волокни стые компоненты, входящие в состав шихты и не являю щиеся носителями вяжущих свойств. При этом разли чают активные наполнители, которые интенсивно взаимо действуют с жидкой составляющей, армирующие напол нители (стеклянные волокна, древесные волокна, ткани и легковесные наполнители (гранулированные типа ке рамзита, вспученный перлит и др.). [c.26]

    С усложнением состава эпоксидного материала вероятно, возрастает его активируемость, так как в большинстве случаев рецептуру усложняют введением наполнителей, пигментов, армирующих компонентов и других веществ и соединений, в процессе взаимодействия которых с излучением возникают долгоживущие изотопы с жестким вторичным излучением. [c.130]

    Маприца - компонент, обладающий непрерывностью по всему объему. Армап ра -прерывный компонент, разделенный в объеме композиции (усиливающий, армирующий компонент, наполнитель). В качестве матрицы могут бьггь использованы органические и неорганические полимеры, керамика и другие вещества, усиливающим наполнителем - дисперсные частицы или волокна материалов различной природы [17]. [c.756]

    Если один из компонентов композита непрерывен во всем объеме, а другой является прерывистым, разъединенньш, то первый компонент называют матрицей (связующим), а второй - арматурой (армирующим элементом, наполнителем). Матрица в композите обеспечивает монолитность материала, передачу и распределение напряжений в наполнителе, определяет тепло-, влаго-, огне- и химическую стойкость Есть композиты, для которых понятие матрицы и арматуры непримени1ю, например, для слоистых композитов, состоящих из чередующихся слоев, или для псевдосплавов, имеющих каркасное строение. Псевдосплавы получают пропиткой пористой заготовки более легкоплавкими компонентами, их структура представляет собой два взаимопроникающих непрерывных каркаса. Обычно композиты получают общее название по материалу матрицы. [c.8]

    Как правило, компоненты композиций различают по геометрическому признаку. Компонент, обладающий непрерывностью по всему объему, получил название матрица, а компонент, разде-ленньш в объеме композиции прослойками матрицы, носит название арматура (усиливающий, армирующий компонент, наполнитель). [c.114]

    Прочностные характеристики полимеров, наполненных армирующими волокнистыми наполнителями. Отличаются от свойств материалов, наполненных порошкообразными наполнителями, прежде всего тем, что они зависят от свойств компонентов системы, причем в случае армированных пластиков свойства и структура армирующего материала могут являться определяющими для механических и прочностных характеристик системы в целом [7]. Это особенно относится к анизотропным материалам. Поэтому значение физико-химических процессов на границе раздела фаз, рассмо- тренных выше, сохраняется, естественно, и для армированных [c.173]

    Керамич. к л е и - композиции на основе высокоплавких оксидов Mg, Al, Si, Zr (т. пл. 2825, 2053, 1728 и 2700 °С соотв.) и оксидов щелочных металлов (т. пл. 350-400 °С) с добавками селитры, НВОз, а в нек-рых случаях, для повышения термостойкости,-порошков металлов (А1, Си, Ni, Si, Fe, Ti, Ва). В зависимости от количеств, соотношения высоко- и низкоплавких оксидов получают композиции с т.пл. 500-1Ю0°С, Готовят сплавлением компонентов, быстрым охлаждением сплава (фритты) в воде, сушкой, измельчением, смешением с наполнителями и др. модификаторами при добавлении воды. Представляют собой суспензии тонко-измельченных компонентов в воде или, напр., в среде 1%-ного р-ра нитроцеллюлозы в амилацетате. Примерная рецептура (в мае. ч.) фритта 60-70, коллоидный SiOj 1-2, порошок металла 5-20, вода 25-32 состав фритты (в мас.ч.) 23-28 SiO , 10-15 Al Oj, 10-20 Na O, 3-6 К О, 3-6 BajOj, 8-12 ZnO, 4-6 aO. Для повышения прочности клеевого соединения керамич. клеи армируют металлич. сетками. Клей наносят на соединяемые пов-сти, выдерживают на воздухе для удаления воды, после чего склеивают при небольшом давлении и т-ре, превышающей на 20-50 °С т-ру плавления композиции, в течение 15-20 мин с послед, плавным охлаждением. Клеевые соед. работоспособны до 3000 °С, но отличаются хрупкостью. Прочность соединений металлов при сдвиге 6-20 МПа. Применяют для склеивания керамики, металлов, кварца, графита и др. термостойких материалов в авиац., электронной пром-сти, приборостроении. [c.404]

    Особенностью изготовления изделий из армированных П. м. является то, что материал и изделие в большинстве случаев изготовляются из исходных компонентов одновременно. Для создания изделий с требуемьпчи эксплуатац. св-вами выбранные методы и режимы переработки должны обеспечивать необходимую монолитность материала, требуемое содержание, ориентацию и равнонапряженн )Сть армирующего наполнителя. [c.10]

    В последние г01ды усилились работы по созданию самосмазывающихся материалов, армирующий каркас которых сформирован из металлического волокна или проволоки различного сечения, а матрица — из полимерного связующего или композиции на ее основе. Как уже отмечалось, свойства материалов этого класса, как правило, определяются свойствами исходных компонентов и продуктами их взаимодействия [18, 19]. Поэтому основными задачами при создании таких материалов является подбор армирующих волокон, связующего, дисперсных наполнителей и разработка способов их соединения. В настоящее время щирокое распростра-иенпе получили способы армирования полимеров путем горячего прессовання, литья под давлением, прокатки, ориентацией в маг-пнтном поле [3]. Успешно решена и задача получения и использования при разработке композиционных материалов металлических и металлизированных углеродных волокон. [c.87]

    Дешевые неотверждающиеся, или как их еще называют, невысыхающие герметики, кроме ПИБ часто содержат битум, гудрон, асфальт, церезин или другие природные продукты, а также какое-либо высококипящее масло. Последнее растворяет твердые органические компоненты и придает всей системе гомогенность и требуемую рабочую вязкость. В тех случаях, когда прибегают к использованию более дорогого высыхающего масла, например льняного, одновременно решается и другая техническая задача. Мигрирующее на поверхность высыхаЛщее масло под воздействием воздуха окисляется, образуя эластичную пленку, защищающую основную массу герметика от контакта с воздухом и предупреждающую оползание. Такую же цель преследуют, когда в полиизобутиленовую композицию добавляют бутадиен-стирольный или какой-либо другой непредельный каучук, склонный к самопроизвольному окислительному структурированию на воздухе. Обычными наполнителями герметиков на основе ПИБ и его композиций с бутилкаучуком и СКЭП являются дешевые минеральные материалы природного происхождения, которые можно превратить в порошок любой степени дисперсности. Применяемый иногда асбест и другие волокнистые наполнители выполняют роль армирующего материала и препятствуют самопроизвольному оползанию герметизирующих паст. В герметики часто вводят бентонит и другие тик-сотропные добавки. Пасты и замазки на основе ПИБ обычно [c.64]

    При конструировании однонаправленных композиционных пластиков, растягиваемых вдоль волокон, необходимым условием максимального использования механических свойств наполнителя является условие 1 1кр, т. е. фактическая длина волокон в композиции должна быть не меньше критической длины /кр. Под критической длиной армирующих волокон в однонаправленном пластике понимают их минимальную длину, при которой касательные напряжения на границе раздела с матрицей, передающей нагрузку на волокна, достаточны для реализации прочности волокон. Вывод формул для расчета критической длины волокон базируется на одной из пяти теорий распределения продольных напряжений на границе раздела волокно — связующее [2, с. 75]. В четырех из них предполагается, что компоненты пластика деформируются упруго, а в пятой — что связующее проявляет пластические свойства. [c.22]

    В настоящее время создан ряд композиционных материалов, в которых в качестве наполнителя или армирующего элемента применяются волокна на осно-ре ароматических полиамидов. Получение композиционных материалов из волокон на основе ароматических полиамидов и слюды описано в работе [89]. Во-лакна на основе поли-ж-фениленизофталамида диспергируют в воде (содержание волокон — 0,8%) и смешивают с водной дисперсией слюды (1%), экструдируют, сушат при 125 °С и прессуют при 280 °С и 70 кгс/см . Полученный материал имеет толщину 0,023 см, разрушающее напряжение при растяжении — 10,3 кгс/см , электрическую прочность 288 В/см. Волокна из ароматических полиамидов могут быть использованы для создания слоистых пластиков [90, 91]. Другими компонентами таких пластиков являются слюда, полиимидный отвердитель. Материал характеризуется стабильностью размеров, прочностью при растяжении, устойчивостью к истиранию, высокими теплостойкостью и электрическими характеристиками. Особо прочными являются слоистые пластики, армированные высокопрочными волокнами типа кевлар, сформованными из анизотропных растворов. [c.230]

    Особенно большое значение приобретают полимерные композиционные материалы-композиты. В них основные нагрузки выдерживают армирующие волокна из стекла, полимеров, металлов. Полимер выполняет роль связующего. Помимо волокон или наряду с ними в композит можно вводить различные дасперсные наполнители, газ. Создание композитов-следующий шаг в развитии пластмасс. Сначала применяли чистые полимеры, а их свойства пытались изменять только варьируя химическую структуру макромолекул. Теперь, вводя новые компоненты, удается достичь замечательных результатов. [c.40]

    Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использование такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось не вполне точным. Само понятие композиционный уже указывает иа присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря па несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например несмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ух- пщению механических свойств композиционных материалов, о. зывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность. [c.287]


Смотреть страницы где упоминается термин Наполнители и армирующие компоненты: [c.8]    [c.154]    [c.37]    [c.52]    [c.125]   
Смотреть главы в:

Облученный полиэтилен в технике -> Наполнители и армирующие компоненты




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте