Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы для термопар, жаростойкость

    Жаростойкую проволоку для некоторых термопар тоже изготавливают из сплавов никеля. Сплавы 10 % Сг—N1 хромель Р) и 2 % А1, 2 % Мп, 1 % 51, остальное N1 алюмель) могут быть использованы на воздухе при температурах до 1100°С. [c.208]

    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других металлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар а также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электролитического производства надсерной кислоты и перборатов. Палладий и платина применяются в ювелирном деле. [c.646]


    Сплавы рения с платиной или вольфрамом используют для изготовления термопар, электрических ламп, электроконтактов. Вместе с танталом, молибденом и вольфрамом рений входит в состав жаростойких сплавов, коррозийно-устойчивых покрытий. [c.421]

    АЛЮМЕЛЬ, сплав на основе Ni, содержащий А1 (1,8— 2,5%), Мп (1,8—2,2%), Si (0,85—2,0%), Со (0,6—1,0%). Обладает высокой жаростойкостью (на воздухе — до 1000 °С). Термоэлементы, в состав к-рых входит А., имеют большую термоэдс, к-рая изменяется практически линейно в широком интервале т-р. Примен. для изготовления термопар (в паре с хромелем). [c.28]

    Применение. Основная часть (75—80%) производимого молибдена используется в черной металлургии для легированных сталей. Молибден находит применение для получения жаростойких и кислотостойких сплавов. Благодаря высокой температуре плавления (2620 10° С), прочности при высоких температурах, хорошей электропроводности молибден используют в производстве электроламп и электронных приборов. Из молибденовой проволоки в паре с вольфрамовой делают термопары для измерения температур в интервале 1200—2000 С. Молибден и его сплавы используют для изготовления лопаток турбин и других деталей реактивных двигателей. [c.164]

    Эти сплавы широко применяют для нагревательных элементов электропечей, реостатов, термопар. Нихромы, как правило, используют в качестве жаростойкого и жаропрочного материала для клапанов мощных авиационных моторов. [c.230]

    Благодаря огнеупорным свойствам ковалентные и металлоподобные нитриды используются для создания футеровки электролизных ванн, для изготовления защитных чехлов термопар, сопел для распыления расплавленных металлов, тиглей для плавки редких металлов. Высокая жаропрочность и жаростойкость ковалентных нитридов (нитриды алюминия, бора, кремния), а также некоторых металлоподобных нитридов (нитриды титана, циркония, гафния) в сочетании с умеренными коэффициентами термического расширения, высокой термостойкостью позволяют использовать их для создания сплавов, характеризующихся высокой жаропрочностью. [c.42]

    Около 80% выплавляемого никеля используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также в виде декоративно-защитных покрытий на других металлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар (сплавы Р1 — Р(1, Р1 — КЬ, — 1г, Р1 — Ри, Р1 — Оз), а также [c.619]


    В некоторых случаях никелевые сплавы используют для изготовления жаростойкой проволоки для термопар. Сплавы 10% Сг—N1 и 2% А1, 2% Мп, 1% 51, остальное N1 стойки в воздухе до температуры порядка 1100°С. [c.162]

    Необходимо также отметить, что ряд никелевых сплавов, например, никелемедные сплавы (45% Ni + 55% u), никельхромовые сплавы — нихромы, а также эти сплавы в сочетании с железом, алюминиевые (алюмель) и др., обладают высокой жаростойкостью и применяются для изготовления термопар, электронагревателей и др. Сплавы Ni—Сг ограниченно применяются как антикоррозионные материалы при обычных температурах, так как не обладают особыми преимуществами по сравнению со сплавами Ni— u. [c.231]

    Области применения Н. весьма разнообразны. Наиб, развито использование огнеупорных св-в нек-рых ковалентных H.-BN, SiN, AIN, а также ях сложных соед. и разл. материалов на их основе. Н. используют для футеровки, изготовления огнеупорных тиглей, муфелей, чехлов термопар, крепления транзисторов. Цоколей электронных ламп, устройств ядерной техники, высокоТемпературйой смазки, в произ-ве твердосплавного и абразивного инструмента и др. Металлоподобные Н. переходных металлов - компоненты твердых сплавов, их используют при произ-ве огнеупорных тиглей, лодочек для испарения А1, в качестве износостойких покрытий на твердосплавном режущем инструменте, для поверхностного упрочнения деталей мащин и механизмов. Н. входят в состав жаропрочных и жаростойких композиц. материалов, в т. ч. керметов. [c.259]

    Т.к.-компонент жаропрочных, жаростойких и твердых сплавов, абразивный материал его используют для нанесения износостойких покрытий, для изготовления тиглей и чехлов термопар, стойких к расплавл. металлам, для футеровки вакуумных высокотемпературных печей. [c.592]

    КОПЁЛЬ от англ. сор(рег) — медь и (ник)ель] — медноникелевый сплав с особыми термоэлектрическими свойствами. Хим. состав К. (марки МНМц43-0,5) 42,5-44,0% N1 0,1—1,0% Ми не более 0,1% С 0,1% 31 0,15% Ке остальное — медь. По хим. составу и св-вам (табл.) К. близок к константану. Значительно превосходит алю.чель по величине отрицательной термоэдс. С хромелем образует пару, обладающую большей термоэдс (при т-ре до 100° С она равна +6,95 мв). Однако К. значительно уступает алюмелю и хромелю в отношении жаростойкости, поэтому термопара хромель — копель в эксплуатации надежна лишь до т-ры 600° С (крат- [c.620]

    На этом участке платину с большим успехом заменили жаростойкими хромоникелевыми сплавами или сплавами Fe— Сг—А1. До настояшего времени платину и ряд сплавов па ее основе довольно часто применяют для изготовления термопар, пирометров и неокисляющихся электроконтактов. Сплавы с платиной часто используют в медицинской технике и химической промышленности для фильер при производстве искусственного волокна. [c.321]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    Наряду с платинородий-платиновой термопарой наиболее часто применяют для измерения температур химических процессов хромель-алюмелевую (ХА). Положительным электродом является кромель, — жаростойкий сплав никеля и хрома, — а отрицатель-ым — сплав алюмель (табл. 21). [c.76]

    Однако при всех этих условиях можно сказать, что идеальной термопары вообще не существует так, термопары из неблагородных металлов часто обладают высокой ТЭДС, дешевы, но не н ароупорны, некоторые же из них, наоборот, жароустойчивы, но обладают способностью к перекристаллизации и хрупки или очень легко окисляются термопары из благородных металлов обладают многими очень ценными свойствами, в особенности химической устойчивостью и жаростойкостью, но они дороги, зависимость их ТЭДС от температуры невелика и часто не прямолинейна. Наконец, некоторые благородные металлы при высоких температурах довольно значительно распыляются, что объясняется образованием нестойких кислородных летучих соединений (иридий, рутений). Поэтому, например, термопара из сплава платины с иридием, предложенная в свое время Брау-сом, уже более не применяется из-за летучести иридия и вызванной ею нестабильности ТЭДС. [c.33]


    Одпп термоэлектрод термопары- ТПП (платинородий —платина) выполнен из сплава (10% КЬ и 90% К1), второй электрод—из чистой платины. Такая термопара обладает повышенной жаростойкостью и стабильной характеристикой. Она применяется для измерения температур от 200до 1300°С при длительном использовании в промышленных условиях и до 1600 °С при кратковременных измерениях. Диаметр термоэлектродов 0,5 мм. [c.168]

    Эти сплавы имеют чисто аустенитную структуру и отличаются большой жаростойкостью и жаропрочностью. Х15Н60 хорошо работает до температуры 1000°, а Х20Н80 — до 1100°. Они обладают также высоким омическим сопротивлением первый порядка 1,1 oM MM Im, второй 1,5 ом мм м, и находят широкое применение для изготовления нагревательных элементов электропечей, для реостатов, а также термопар. Нихромы нашли применение также в качестве жаростойкого и жаропрочного материала для клапанов мощных авиационных моторов. [c.540]

    До настоящего времени в ходу лабораторная посуда, электрохимические электроды и нерастворимые аноды из платины. Еще не так давно большое количество электрических печей сопротивления изготовлялось с платиновой обмоткой (ныне платиновая обмотка с большим успехом заменяется жаростойкими сплавами на железной основе с хромом и алюминием). До настоящего времени платина довольно часто применяется для термопар и неокисляющихся электроконтактов. В виде сплавО В платина применяется для фильер при производстве искусственного волокна. Используе 1ся платина также в качестве контакта и катализатора при окислении аммиака в азотную кислоту. В некоторых химических производствах применяют обкладку платиновыми листами (толщиной не менее 0,1 мм) аппаратов и отдельных деталей приборов, работающих в наиболее агрессивных средах. Плагина стойка во многих минеральных и во всех органических кислотах и едких щелочах. Однако смесь соляной и азотной кислот, а также смесь соляной кислоты с другими сильными окислителями разрушают платину, хотя и заметно медленнее, чем золото. Чистые галогено-водородные кислоты при нормальных температурах почти не действуют на платину, однако при нагреве начинают воздействовать (причем более сильно бромисто-водородная и иодисто-водород-ная). Свободные галогены при высоких температурах также воздейст вуют на платину. Платина не окисляется ори нагреве на воздухе и з кислороде до температуры плавления, однако подвергается разрушению даже при гораздо более низких температурах в атмосферах, содержащих СО, или в контакте с углем, при одновременном наличии хлора или хлористых солей, следствие способности образовывать летучие карбонил-хлориды платины. [c.577]


Смотреть страницы где упоминается термин Сплавы для термопар, жаростойкость: [c.581]    [c.670]    [c.581]    [c.670]    [c.424]    [c.65]    [c.539]    [c.161]   
Коррозия металлов Книга 1,2 (1952) -- [ c.725 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Жаростойкость

Термопара



© 2025 chem21.info Реклама на сайте