Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитриды ковалентные

    Ковалентная связь образуется в кристаллах некоторых простых веществ (алмаз, кремний) или в кристаллах соединений двух элементов, если они близки между собой по электроотрицательности (некоторые карбиды, нитриды и др.). В качестве идеального примера кристалла с ковалентной связью [c.8]

    При прямом взаимодействии азота и фосфора со многими металлами и неметаллами образуются нитриды и фосфиды. В зависимости от полярности связи Е—X можно наблюдать переходы от связей ионного типа к ковалентным или к металлическому типу связи (X=N, Р). При этом происходят переходы между тремя основными типами соединений меняются также химические свойства соединений. [c.533]


    Поскольку в металлоподобных нитридах доминирует металлическая связь при заметной доле ковалентности, они характеризуются металлическим блеском, хорошей теплопроводностью и электрической проводимостью в сочетании с высокой твердостью и тугоплавкостью. Однако по всем этим параметрам металлоподобные нитриды несколько уступают металлоподобным карбидам. Это обусловлено большей электроотрицательностью азота по сравнению с углеродом. В химическом отношении металлоподобные нитриды, как и карбиды, являются очень инертными материалами. Они не корродируют в атмосферных условиях, не разрушаются водой и расплавами металлов и кислотоупорны. [c.267]

    Сам углерод известен главным образом в двух полиморфных модификациях алмаза и графита. В первой из них реализуется пространственная тетраэдрическая структура (sp -гибридизация), а во второй — слоистая гексагональная структура (sp -гибридизация) с более слабыми связями между слоями. Первый изоэлектронный аналог углерода — нитрид бора BN — также образует алмазоподобную кубическую (сфалеритную) и графитоподобную слоистую структуры. Однако появление некоторой доли ионности химической связи обусловливает возникновение третьей полиморфной модификации BN — гексагональной структуры типа вюртцита. Таким образом, в бинарных соединениях с тетраэдрической структурой и преимущественно ковалентным типом связи вюртцитоподобная модификация стабилизируется при наличии заметного ионного вклада. Это положение особенно наглядно проявляется у следующего изоэлектронного аналога углерода — ВеО, в котором стабильной модификацией является гексагональная типа вюртцита, что обусловлено еще большей разностью ОЭО компонентов. И наконец, преобладающий ионный вклад в химическую связь последнего члена этого изоэлектронного ряда — LiF — обеспечивает образование кристаллов с решеткой типа Na l (к. ч. 6). [c.51]

    При комнатной температуре гидролизу подвергаются только те нитриды, которые образованы активными металлами (в этих соединениях имеется значительная доля ионной связи). Существуют также нитриды, в которых связь близка к ковалентной (BN, S 3N4 и др.). Они устойчивы к действию -воды и кислот при комнатной температуре, d- и /-Элементы образуют нитриды (TiN и др.),, сходные с карбидами. Обычно они обладают металлической проводимостью. Это очень твердые, тугоплавкие и химически инертные вешества. [c.397]

    Ковалентная связь между частицами образуется в кристаллах некоторых простых веществ (алмаз, графит) или в кристаллах соединений из двух элементов, если последние сравнительно близки между собой по своей электроотрицательности [карборунд (Si ) и некоторые другие карбиды,. нитриды и пр.]. [c.125]


    Нитриды — соединения азота с металлами и более электроположительными неметаллами. Нитриды неметаллов — вещества с ковалентной связью. Они являются диэлектриками или полупроводниками. Нитриды щелочных и щелочноземельных металлов — солеобразные вещества, реагирующие с кислотами и подвергающиеся гидролизу  [c.258]

    Керамики в широком смысле слова можно определить как неорганические вещества с ионной и ковалентной межатомной связью (оксида, карбида, нитриды и др.). [c.6]

    Из ковалентных нитридов наибольшее практическое значение имеет нитрид водорода H3N — аммиак. В обычных условиях это бесцветный газ с резким удушающим запахом. [c.391]

    По типу химической связи N—Э нитриды подразделяют на ионные (солеобразные), ковалентные и металлоподобные. Многие нитриды получают непосредственным взаимодействием металла с азотом, например ионные нитриды щелочных и щелочно-земельных металлов. Нитриды подгрупп Си и Zn имеют преимущественно ионно-ковалентную связь. С увеличением доли ковалентной связи возрастает устойчивость нитридов. [c.308]

    Ковалентные кристаллы. Структурными единицами в кристаллических решетках этого типа являются атомы одного или различных элементов, связь между которыми носит ковалентный характер и осуществляется по всем трем характеристическим осям. Ковалентные кристаллы сравнительно немногочисленны. Примерами кристаллов этого типа могут служить алмаз, кремний, германий серое олово, а также кристаллы сложных веществ, таких, как кварц, карбид кремния, сульфид цинка, нитрид алюминия. [c.77]

    Энергия кристаллической решетки в кристаллах этого типа фактически совпадает с энергией химической связи и лежит в пределах 200—500 кДж/моль. Так, энергия кристаллической решетки алмаза составляет 480 кДж/моль. Вследствие столь высокой энергии связи ковалентные кристаллы обладают высокими твердостью, температурами кипения и плавления. Диапазон их электропроводящих свойств велик от типичных диэлектриков (алмаз, нитрид бора, кварц) до полупроводников (кремний, германий) и даже электронных проводников (олово). [c.77]

    Азот и фосфор образуют с металлами химические соединения, в которых они играют роль электроотрицательных элементов. Эти соединения получили названия нитридов и фосфидов. По типу химической связи между металлами и азотом или фосфором нитриды и фосфиды могут быть разделены на три группы а) солеподобные, или ионные, б) ковалентные и в) металлоподобные. [c.214]

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]

    Наименьшие значения координационных чисел свойственны тем кристаллам, у которых между частицами осуществляются направленные ковалентные связи. Так, в кристаллах алмаза, нитрида бора, кристобалита 8Юг координационное число равно четырем, а объем, занимаемый частицами, составляет лишь 34 %. [c.66]

    Какая разница в химических свойствах ковалентных и ионных нитридов Ответ поясните примерами химических реакций. [c.286]

    Из ковалентных нитридов наибольшее практическое значение имеет нитрид водорода H3N — аммиак. В обычных условиях это бесцветный газ с резким удушаюш,им запахом. Молекула H3N имеет форму тригональной пирамиды ( nh — 0,1015 нм, HNH = 107,3°). Согласно теории валентных связей атом азота в молекуле H3N находится в состоянии sp -гибридизации. Из четырех sp -гибридных орбита- [c.346]

    Нитриды 5- и р-элементов либо ионные соединения (Ы, Мд, Са, Ва, 5г), либо ковалентные. К последним относятся, например, нитрид бора (ВЫ), нитрид кремния (51Ы). Ковалентные нитриды 5- и Р Элементов характеризуются повышенной стойкостью к агрессивным средам. Солеобразные нитриды легко гидролизуются с выделением аммиака. [c.437]

    Обе реакции доказывают основную природу нитрида кальция. Функцию основного нитрида солеобразные нитриды выполняют и при взаимодействии с ковалентными нитридами  [c.267]

    Нитриды. Нитриды металлов (т. е. соединения с азотом электроположительных элементов) во многих отношениях сходны с силицидами. Их и делят обычно (Г. В. Самсонов) на ионные, ковалентные и металлоподобные, как это принято по отношению к силицидам. Металлы I и II групп, обладающие валентными s-электронами, образуют нитриды ионного типа, а алюминий, галлий, индий и т. п., для которых характерно наличие / -электронов на внешних оболочках, — нитриды ковалентного типа. Переходные металлы дают металлоподобные нитриды. Формально можно рассматривать нитриды первых двух типов как производные аммиака (LisN, K3N, AIN) — они действительно под действием воды разлагаются с выделением аммиака. Нитриды щелочных и щелочноземельных металлов неустойчивы (особенно во влажном воздухе). Нитриды алюминия и бора с кислотами практически не реагируют. Нитрид бора BN — боразон — отличается исключительной твердостью (близок по твердости к алмазу) и термостойкостью — выдерживает температуры до 2000°С. [c.293]


    Молекулы азота N2 очень прочны. Даже при 3000 °С степень диссоциации молекул N2 на атомы достигает всего лишь 0,1 %. По методу валентных связей прочность молекулы N2 можно объяснить образованием трех ковалентных связей (одной ст и двух л), поскольку в каждом атоме азота на энергетическом 2р-подуровне есть три неспаренных электрона (см. рис. И.З). При невысоких температурах азот химически инертен. Именно поэтому в природе устойчивы молекулы N2. При температуре более 300 °С азот энергично взаимодействует с литием, образуя нитрид LI3N. При более высоких температурах — с магнием, алюминием и некоторыми другими металлами и неметаллами, образуя нитриды (см. IX.3). [c.277]

    Ато.м азота имеет на внешнем слое трн неспаренных электрона (15 25 2р ) поэтому атомы азота образуют двухатомную мо-, 1екулу N2 с тремя ковалентными связями. По методу МО ЛКАО кратность связи в молекуле равна трем N0 [/С/С(а,) (о ) (л,) (л,,) (о,.), что объясняет ее химическую инертность. При комнатной температуре азот не реагирует нн с металла.мн, ин с неметаллами, за исключением лития, который медленно соединяется с азотом с образованием нитрида. При [ агреваннн азот реагирует со многими металлами, например с магнием, титаном, алюминием, а также с неметаллами водородом, кремнием и бором, < )бра (уя нитриды. [c.160]

    Нитриды s-элементов имеют преимущественно ионный характер химической связи (например, в соединении NasN), а нитриды р-элементов характеризуются ковалентной связью. Поэтому нитриды этих элементов по составу подчиняются правилу формальной валентности все валентности атомов одного элемента должны быть задействованы всеми валентностями атомов другого элемента. Нитриды щелочных и щелочноземельных элементов солеобразны и разлагаются водой (см. выше уравнение реакции для a3N2). [c.342]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    В больших периодах переход от ионных нитридов к ковалентным осуществляется через металлоподобные нитриды d-элементов, у которых наблюдается наложение ионной, ковалеппшй и металлической связи. Благодаря участию в связях между атомами металлов и азота s- р- и d-электронов химическая связь в таких нитридах очень прочна. Они имеют сложный состав, не отвечающий обычным валентностям (TiN, Ti N, raN, rN и др.). Это, как правило, туго-плав1 ие нитриды. Они обладают высокой твердостью, электро- и теплопроводностью, химической стойкостью к действию воды и кислот при комнатной температуре. [c.308]

    Ковалентные нитриды образуются при взаимодействии с азотом /j-элемеитов (В, AI, Si, Ge и т. п.). Нитриды AIN, BN, SigNi устойчивы и начинают разлагаться на элементы лишь нри 1000 С, обладают высокой стойкостью против действия расплавленных металлов, горячих кислот, агрессивных газов. Специфика свойств нитридов р- и d-элементов позволяет использовать их для создания высокопрочных материалов. [c.308]

    Ковалентные нитриды и карбиды (бора и кремния), ионн о-к о в а-л е н т н ы е нитриды и карбиды (бериллия, алюминия, галлия, индия). Соединения BN, A1N, GaN, Si , В4С, В12С3 обладают высокой утойчивостью к действию воды, кислот и щелочей. Некоторые из них отличаются исключительной твердостью, например Si — карбид кремния, имеющий кристаллическую решетку типа алмаза и исключительную твердость. [c.243]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Электрические свойства карбидов, нитридов, боридов и силидов указывают на то, что образование ковалентных связей электронами -подуровня и электронами присоединяющегося атома (С, 81, В, Ы) одновременно может возбуждать часть электронов, которые обусловливают металлическую элекгропровод-ность. Вещества с металлической проводимостью или металлообразные вещества образуют, как правило, соединения металлов с неметаллами, которые имеют близкие значения ионизационных потенциалов. [c.110]

    Из ковалентных нитридов наибольшее практическое значение имеет аммиак NH3. Широко используется и гидразин N2H4, например в процессе водоподготовки для количественного связывания остаточного кислорода. [c.277]

    Химическая связь в нитридах кремния и германия ковалентная, а ее энергия близка к энергии связи в соответствующих окислах. Устойчивость нитридов, особенно четырехвалентных, довольно большая, но ниже, чем у двуокисей. Все нитриды, за исключением GegNi, при комнатной температуре медленно разлагаются водой [c.100]

    Атомы всех элементов с IVA-по VIIA-rpynny устанавливают с атомами водорода ковалентные связи, что приводит к образованию отдельных молекул, и поэтому соединения элементов названных групп с водородом являются летучими веществами с низкими температурами кипения. Если бинарные соединения называть по более электроотрицательному элементу, то соединения водорода с элементами второго периода следует называть метан СН< — карбидом водорода, аммиак NH3 — нитридом водорода, воду Н2О — оксидом водорода и фтороводород HF — фторидом водорода. [c.213]

    В нитридах р-элементов связи носят ковалентный характер и, если атомы способны образовывать по четыре связи, то такие нитриды являются полимерными твердыми тугоплавкими веществами. Нитриды -элементов относятся к соединениям интерметаЛ -лического типа состава МеЫ или Me2N, который может варьировать в определенных пределах (например, TiNo,45ч-l ) они обладают металлическим блеском, электрической проводимостью, твердостью и тугоплавкостью. [c.254]

    Как правило, -элементы не дают бинарных соединений определенного состава с водородом (кроме I, II и III групп). Весьма характерны для них карбиды, нитриды, фосфиды, бориды и т. п. Переходные элементы могут образовывать соединения, не имеющие аналогов среди соединений непереходных элементов, типа [Ре(СО)5]2, [Fe( 0)2(N02)], K[Nb( 0)5], Ks [Fe( N)sNO], (я-С.5Н5)2ре. Для тяжелых переходных 5 -элeмeнтoв характерны кластерные соединения, в которых наряду с ковалентными связями имеют место связи металл—металл (М—М) типа (ТабС1б)2С12- [c.499]

    Мы не приводим да1ппз1е по нитридам, так как они в большей мере являются диэлектриками, а не полупроводниками. Все соединения типа кроме нитридов, имеют кристаллохимическое строение сфалерита. И атомы А , и атомы В проявляют ковалентность, равную 4, причем три связи образуются по обменному механизму, одна — по донорно-акцепторному. Соединения типа A B" являются изо- [c.162]


Смотреть страницы где упоминается термин Нитриды ковалентные: [c.348]    [c.427]    [c.129]    [c.215]    [c.288]    [c.282]    [c.339]    [c.489]    [c.73]    [c.74]    [c.76]    [c.241]   
Неорганическая химия (1989) -- [ c.74 , c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Ковалентные кристаллы нитрид бора

Нитриды



© 2025 chem21.info Реклама на сайте