Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отходы промышленные, переработка биологическими методами

    Основным условием применения биологической переработки сточных вод является постоянный контроль за возможным токсическим действием на установку со стороны поступающих стоков, с тем чтобы предотвратить серьезные повреждения системы или даже выход ее из строя. При эксплуатации установок по переработке отходов и промышленных сточных вод важно следить за тем, чтобы не возникали перегрузки. Обычные методы проведения анализов (например, измерение потребности в кислороде или определение pH) часто и недостаточно быстры, и малочувствительны. Однако в метаболической активности микроорганизмов существуют ключевые моменты, анализ которых дает возможность улавливать малейшие изменения в их состоянии. Например, благодаря внутриклеточному контролю метаболизма содержание АТР в популяции микроорганизмов сохраняется на относительно постоянном уровне, около 2 мкг на 1 мг сухой массы клеток. Изменения доступности субстрата или введение токсических веществ быстро сказываются на концентрации АТР внутри клеток. Мгновенная гибель клеток ведет к полной потере АТР за счет автолиза. Время оборота для АТР обычно не превышает 1 с. [c.264]


    Основную часть воспроизводимой биомассы составляет древесина (лигноцеллюлоза), которая из-за особенностей своего строения с большим трудом поддается биологической конверсии. Поэтому в ближайшие годы основным сырьем для производства топлив методом биоконверсии будут служить легко трансформируемые органические соединения — отходы, образовавшиеся в результате промышленных и других переработок первичной биомассы. В развитых странах в год на одного человека приходится до 5 т органических отходов по сухому веществу. Многие из них представляют серьезную экологическую опасность и требуют незамедлительного обеззараживания, утилизации и уничтожения. С ростом производств и урбанизацией происходит концентрация этих отходов, что требует, с одной стороны, применения неотложных мер с целью их обезвреживания, с другой — позволяет применить прогрессивные технологии переработки с возможным вторичным получением топлива. [c.619]

    С момента возникновения цивилизованного общества перед ним все время стояла проблема охраны окружающей среды. Из-за промышленной, сельскохозяйственной и бытовой деятельности человека постоянно происходили изменения физических, химических и биологических свойств окружающей среды, причем многие из этих изменений были весьма неблагоприятны. Мы ожидаем, что биотехнология будет оказывать многообразное и все возрастающее влияние на способы контроля за окружающей средой и на ее состояние. Хорошим примером такого рода служит внедрение новых, более совершенных методов переработки отходов, однако этим применение биотехнологии в данной сфере отнюдь не ограничивается. Она будет играть все большую роль в химической промышленности и сельском хозяйстве и поможет хотя бы отчасти решить многие из существующих здесь проблем. [c.246]

    Рассмотрим методы биологической переработки промышлен-яых отходов на примерах молочной, бумажной промышленности и производства красителей. [c.277]

    Этот метод, подробно до сих пор не описанный, по-видимому, применялся Б промышленном масштабе в течение непродолжительного времени. Вероятно, еще не все трудности были преодолены, а, возможно, производство жировых дрожжей оказалось менее экономичным, чем производство белковых дрожжей. Во всяком случае, видимо, более целесообразно подвергать сахаристые отходы биологической переработке на белки, а не на жиры. [c.349]

    Фильтры, пораженные влажностью, как и в целом засоренные и полностью выработавшие свой рабочий ресурс, должны утилизироваться в соответствии с одним из методов, предписываемых местными нормами гигиены на свалку, путем сожжения, в переработку. Возможна комбинация из этих трех способов, в зависимости от материалов конструкции фильтра. За проведение утилизации фильтров отвечает начальник службы технического обслуживания или начальник производства. В особых случаях фильтры должны быть утилизированы как опасные отходы это касается фильтров, используемых в больницах, медико-биологических лабораториях, промышленных предприятиях, перерабатывающих вредные вещества, всех тех случаев, когда фильтры неизбежно могут быть подвержены заражению. Фильтры, снимаемые с таких производств, почти всегда должны утилизироваться с соблюдением особых мер предосторожности в отношении зашиты здоровья персонала службы утилизации, а также людей и окружающей среды. [c.261]


    Крупнотоннажным отходом нефтеперерабатывающей и химической промышленности являются сернисто-щелочные сточные воды. Они содержат сульфиды, гидросульфнды, меркаптаны, фенолы и некоторые другие соединения. Их обезвреживают методом карбонизации и окисления кислородом воздуха. При наличии в этих сточных водах заметного количества нафтеновых кислот последние целесообразно выделять с последующей переработкой в мылонафт. Если количество сернисто-щелочных сточных вод невелико, их можно подвергать биологической очистке в смеси с общими сточными водами. На заводах, работающих без сброса сточных вод, избыточные сернисто-щелочные воды после локальной очистки наиравляют на установку термического обезвреживания. [c.98]

    Ферментативный способ получения моносахаридов во многом лишен недостатков, присущих способу, основанному на кислотном гидролизе, поскольку осуществляется в гораздо более мягких условиях по температуре, давлению и кислотности среды Это требует значительно меньших расходов энергии, предотвращает деструкцию сахаров и образование трудно утилизируемых отходов, снижающих биологическую ценность гидролизатов Наконец, следует иметь в виду возможность решения экологических проблем, связанных с необходимостью создания биотехнологических методов утилизации отходов и вторичных продуктов промышленной и сельскохозяйственной переработки растительного сырья В данной работе рассмотрены теоретические аспекты ферментативной деструкции природных полисахаридов — компонентов растительного сырья Интерес к исследованию этой проблемы обусловлен необходимостью разработки научных основ тех направлений физико-химической энзимологии и ферментативной кинетики, которые связаны с функционированием полифермент-ных систем, особенно с ферментативными реакциями со сложной стехиометрией (когда субстрат является полимером, а промежуточные и конечные продукты — олиго- или мономерами) [c.4]

    В этой главе мы обсудим роль биотехнологии в производстве высококачественного топлива ( premium fuels ) из биологического сырья. Начнем с того, что термин биомасса , который многими микробиологами понимается в относительно узком смысле, сегодня при описании самых общих принципов производства разнообразных видов высококачественного топлива и веществ специального назначения из растений, выращенных непосредственно для этих целей, или из биологических отходов, образующихся, например, в сельском хозяйстве или пищевой промышленности, используется в более широком смысле. Воскове как запасания энергии (фотосинтез), так и переработки сырья (биомассы) в более ценное топливо (путем ферментации) лежат биологические процессы. Особое внимание сегодня уделяется разработке более изощренных генетических методов считается, что они сыграют важную роль как при выведении улучшенных сортов растений с более высокой урожайностью, так и новых форм микроорганизмов для осуществления процессов конверсии. Кроме того, вполне возможно создание комбинированных искусственных систем, включающих отдельные компоненты животных и растений. Таким путем можно получить газообразный водород, связанный С или NH3. [c.35]

    Для переработки промышленных отходов можно применять следующие биотехнологические методы биовыщелачивание - для удаления тяжелых металлов (гальваношламы, доменные шлаки, строительные материалы и др.), биодеструкцию органических материалов (например, для перевода радионуклидов или тяжелых металлов в растворимую форму и дальнейшей их обработки физическими и химическими методами), биомодификацию -для улучшения характеристик строительных материалов (бетона, цемента и др.) при добавлении в качестве связующих компонентов микробной биомассы, для повышения прочности пластиков, резино-технических изделий, древесных материалов и других отходов при их вторичной переработке. Так, сотрудниками Института биохимии РАН разработан способ применения биологической обработки стружки грибами белой гнили в производстве древесно-стружечных плит с последующим горячим прессованием вместо карбамидных и фенолформальдегидных связующих. В США подобный процесс предложен для перереботки изношенных шин и других резинотехнических изделий. Шины измельчают, крошку обрабатывают тиобактериями, активирующими сульфидные и дисульфидные связи, и повторно вулканизируют. [c.230]


Биотехнология - принципы и применение (1988) -- [ c.13 , c.14 , c.26 , c.274 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Отходы, переработка

Промышленные отходы

методы переработки



© 2024 chem21.info Реклама на сайте