Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие природные полисахариды

    Крахмал - второй важнейший природный полисахарид растительного происхождения. Это гомополисахарид, образованный двумя компонентами. Один из них - амилоза, состоящая из а-О-глюкозы, имеет линейную структуру, а другой - амилопектин, тоже содержит а-О-глюкозу, но обладает [c.68]

    КАМЕДИ (гумми) — вещества или смеси веществ углеводного характера, об-лад1ющие свойством набухать и образовывать вязкие растворы или дисперсии. К. выделяются из растений при механическом повреждении их или заболевании. К К- относятся также модификации природных полисахаридов, например, крахмала, клетчатки (аравийская К.., или гуммиарабик агар-агар и др.). Синтетические К- получают введением остатков серной кислоты и различных групп в амилозу и другие полисахариды. К. применяют в пищевой, бумажной, текстильной, фармацевтической, горнодобывающей и других отраслях промышленности как клеи, стабилизаторы, для образования вязких растворов, искусственного волокна, пленок, наполнителей, взрывчатых веществ и др. [c.117]


    У основного компонента древесины - целлюлозы и других полисахаридов из-за очень большого числа полярных ОН-групп в макромолекулах водородные связи как межмолекулярные, так и внутримолекулярные играют очень важную роль (см. 9.3). Н-связи большое значение имеют и в химии других природных биополимеров - нуклеиновых кислот и белков. Эти связи легко образуются и разрушаются, что важно для процессов обмена в живых организмах. [c.129]

    Д. Другие природные полисахариды [c.322]

    Аналогично крахмалу и гликогену гидролизуются другие природные полисахариды целлюлоза—при участии целлюлазного комплекса ферментов (состоит из эндо-1,4-Р Глюканазы, экзоцеллобиогидролазы, целлобиазы и экзо- [c.332]

    Растворы полиэлектролитов. Полиэлектролитами называются высокомолекулярные соединения, содержащие ионогенные группы. Их значение определяется тем, что в состав этой группы входят важнейшие природные соединения — белки и нуклеиновые кислоты. Из других природных соединений отметим полисахариды — альгиновые кислоты и гепарин. [c.214]

    Для оценки биологических функций биополимера необходимо иметь четкое представление о том, в каких биологических структурах находится данный биополимер и какие его свойства необходимы для успешного функционирования этих структур необходимо также связать свойства биополимера с химической структурой. Поэтому вначале кратко будет рассмотрено современное состояние вопроса о цитохимической и гистохимической локализации углеводсодержащих биополимеров и вопроса о связи структуры и биологической функции полисахаридов. В пределах этой главы мы не будем проводить четкого различия между полисахаридами и углеводсодержащими биополимерами смешанного типа, поскольку биологические функции последних чаще всего связаны именно с присутствием в составе молекулы углеводных остатков. С другой стороны полисахариды обычно встречаются в клеточных структурах в виде комплексов различной степени прочности с другими природными биополимерами. [c.598]

    Получают дисахариды из природных продуктов. Некоторые из них встречаются в свободном виде, другие добываются путем гидролиза из гликозидов и полисахаридов. Известны и синтетические способы получения дисахаридов,.однако для практических целей они не применяются. Первый синтез дисахарида был осуществлен в 1879 г. А. А. Колли. [c.250]


    При образовании дисахарида конденсацией двух идентичных моносахаридов могут возникнуть 11 различных изомеров, если принимать во внимание только пиранозные формы, тогда как при образовании трисахарида число возможных изомеров достигает 176 [1]. Такое число изомеров объясняется возможностью образования гликозидных связей с участием различных гидроксигрупп. Для восьми из одиннадцати упомянутых выще дисахаридов в образовании гликозидной связи участвуют гидроксигруппа при С-1 Одной молекулы моносахарида в а- или р-конфигурации и гидроксигруппы при С-2, С-3, С-4 или С-6 второй молекулы моносахарида [ -(1 2)-, 3-(1 3)-связи и т. д.]. Три других изомера возникают путем образования гликозидной связи с участием гидроксигрупп при С-1 обеих молекул моносахаридов в а- или 3-кон-Фигурации. В природных полисахаридах реализуется лишь относительно небольшое число возможных структур, и они являются гораздо менее сложными вследствие специфичности участвующих [c.209]

    К первичным метаболитам относятся также биополимеры — обычные полисахариды, белки и нуклеиновые кислоты. Небольшая часть первичных метаболитов выполняет роль предшественников для всех других природных веществ. К вторичным метаболитам относится подавляющее большинство природных соединений (см. табл. 28.1.1), которые часто имеют очень сложное строение. [c.343]

    Метиловые эфиры. Метиловые эфиры моносахаридов представляют значительный интерес по двум причинам. Во-первых, некоторые частично метилированные сахара широко распространены в природе и входят в состав многих полисахаридов, сердечных гликозидов, антибиотиков н других природных соединений. Во-вторых, метиловые эфиры сахаров сыграли и продолжают играть исключительно важную роль при установлении строения углеводов, особенно олиго- и полисахаридов (см. стр. 433, 494). Большая часть метиловых эфиров различных моносахаридов была синтезирована в тридцатые годы нашего столетия именно в связи с установлением строения полисахаридов, а к настоящему времени известно уже большинство метиловых эфиров важнейших моносахаридов. [c.159]

    Изложенный материал наглядно указывает на чрезвычайное разнообразие структуры внеклеточных гетерополисахаридов микроорганизмов. Помимо большого разнообразия общей архитектоники молекулы и типов связей для полисахаридов этой группы характерно присутствие ряда необычных моносахаридов, не встречающихся в других природных объектах. Такое разнообразие специфических структур внеклеточных полисахаридов микроорганизмов несомненно связано с их специфической биологической функцией — взаимодействием между клетками микроорганизмов и защитой их от внешних воздействий (подробнее см. гл. 22). Внеклеточные гетерополисахариды других микроорганизмов изучены, в общем, значительно хуже, чем полисахариды пневмококков. В большинстве случаев, наши знания о строении внеклеточных гетерополисахаридов ограничены ЛИШЬ знанием их моносахаридного состава. [c.551]

    Пентозы. В природе широко распространены (+)-арабино-за, рибоза, ксилоза, главным образом в качестве структурных компонентов сложных полисахаридов пентозанов, гемицеллюлоз, пектиновых веществ, а также нуклеиновых кислот и других природных полимеров  [c.45]

    Все расширяющееся использование реакций па полимерах обусловлено не только возможностями варьирования их свойств путем изменения природы функциональных групп, но и перспективами получения полимеров для совершенно новых областей применения, например для разделения веществ, синтеза электропроводящих материалов и др. С помощью модификации полимеров можно достигнуть их гидрофильности, что необходимо для использования их в водных системах. Кроме того, целенаправленно синтезированные полимеры могут заменить продукты, получаемые из натурального сырья, например желатин. Важным возобновляемым источником полимерного сырья являются полисахариды химическая модификация этих и других природных полимеров может привести к разработке новых технологических методов и до сих пор неизвестных возможностей их химических превращений. [c.9]

    Следует подчеркнуть, что структура лигнина лишена регулярности характерной для многих других природных полимеров (целлюлозы, белков). В отличие от полисахаридов для лигнина характерно большое разнообразие связей между звеньями в макромолекулах, а также высокая степень разветвленности. Предполагают, что в древесине лигнин имеет сетчатую структуру, т. е. является пространственным полимером. [c.148]

    Из других природных полисахаридов растительного происхождения можно назвать гуммиарабик, трагакант, карайю, агар, дск-страны, лихенин — резервный полисахарид исландского мха, являющийся линейным полимером р-О-глюкопиранозы, содержащий 30% 1 3-и 707о 1->4-связей. Еще одним сопутствующим целлюлозе полисахаридом с а-1,4-гликозидными связями является крахмал, содержащийся в клубнях, например, картофеля, корнях и сердцевине стеблей растений. В семенах имеется до 70°/о крахмала, а в других частях растений — 4—25% (Йирген-сонс, 1964). Крахмал обычно хорошо усваивается животными, человеком и большинством микроорганизмов. [c.18]


    К строительным полисахаридам относится прежде всего целлюлоза — наиболее распространенное в природе органическое соединение. Целлюлоза не растворяется в воде и других растворителях и является основным строительным материалом высших растений. Она имеет огромное практическое значение, прежде всего для бумажной и текстильной промышленности. Чистую целлюлозу получают экстракцией размельченной древесины, например раствором гидросульфита кальция (в нем растворяются другие компоненты древесины). Наиболее чистой природной формой целлюлозы является хлопок. [c.214]

    Сам по себе природный объект, например полисахарид или смешанный углеводсодержащий биополимер, часто бывает столь сложным, что непосредственно понять его свойства и функцию на молекулярном уровне современной науке оказывается не под силу. И тут неоценимую помощь оказывают упрощенные модели такого полимера, включающие определенные элементы его структуры. Такую роль, например, играют олигосахариды по отношению к полисахариду или полисахаридные цепи гликопротеина по отношению к природному гликопротеину. Источником подобных упрощенных систем может служить, с одной стороны, сад[ исходный биополимер, а с другой — их химический синтез. [c.116]

    Олигосахариды и полисахариды являются полимерами (поли-конденсатами), в которых моносахаридные звенья соединены гли-козидными связями, чаще всего по положениям 1,4 или 1,6. Олигосахариды при гидролизе дают несколько молекул моносахаридов, полисахариды — множество таких молекул. Обычно мономерным звеном в природных полимерах служат остатки Д-глюкозы. Большинство других олиго- и полисахаридов, находимых в природе, также построены из моносахаридов С-ряда. Хотя для несложных олигосахаридов можно построить систематические названия, однако обычно используют тривиальные. [c.257]

    СКОЛЬКИХ лет служила материалом для упаковки колонок, и на ней впервые удалось почти полностью разделить энантиомеры. (В 1944 г. было опубликовано сообщение о том, что основание Тре-гера разделено на колонке с лактозой длиной 0,9 м [2].) Разделяющая способность полисахаридов, в частности целлюлозы, была впервые обнаружена при попытке разделить рацемические аминокислоты методом бумажной хроматографии [3—5]. При этом выяснилось, что эти соединения в некоторых случаях дают два пятна на бумажной хроматограмме. Далглищ развил свою теорию трехточечного взаимодействия в 1952 г. на базе данных о бумажной хроматографии рацемических аминокислот [6]. Известны и другие ранние работы по непосредственному разделению энантиомеров аминокислот посредством бумажной хроматографии [7] и тонкослойной хроматографии на целлюлозе (ТСХ) [8]. Все это способствовало использованию целлюлозы и ее производных, а также крахмала и циклодекстринов в хиральной ЖХ. В настоящее время в качестве потенциальных хиральных сорбентов изучается ряд природных полисахаридов. [c.108]

    Полисахариды входят в состав почти всех живых организмов и являются одним нз наиболее крупных классов природных соединений. Они играют роль источников энергии или структурных элементов в живых организмах. В качестве примера структурной роли полисахаридов можно привести целлюлозу (полимер D-глюкозы), являющуюся самым распространенным органическим веществом в природе и опорным материалом у растений, а также хитин (полимер 2-ацетамндо-2-дезокси-0-глюкозы)—основной компонент наружного скелета членистоногих. В качестве одного из основных источников энергии для живых организмов отдельные полисахариды участвуют в главном направлении энергообмена в большинстве клеток. Крахмалы н гликогены (полимеры D-глюкозы) являются аккумуляторами энергии в растениях и животных, соответственно. Полисахариды выполняют и более специфические функции например, они ответственны за групповую специфичность пневмококков. Другие природные макромолекулы, состоящие не только из углеводных остатков и содержащие в своем составе блоки из моносахаридных звеньев, необходимы для нормального развития и функционирования тканей животных. Групповые вещества крови, например, относятся к гликопротеинам, у которых расположение моносахаридных остатков в углеводных субъединицах ответственно за способность всей молекулы определять групповую принадлежность крови. [c.208]

    Гидролизом называется обменная реакция между различными веш,ествами и водой. Гидролизу подвергаются соли, карбиды, углеводы, белки, жиры и т. д. Гидролиз играет важную роль в природных явлениях. Разрушение горных пород обусловлено в значительной мере гидролизом составляющих их минералов — алюмосиликатов. В живых организмах происходит гидролиз полисахаридов, белков и других органических веществ. Оса-харивание крахмала," гидролиз древесины, получение мыла и многие другие важные производства основаны на гидролизе. В военном деле гидролиз используется при дегазации отравляющих веществ. [c.107]

    Глюкоза и другие моносахариды, получаемые в результате гйдролиза природных полисахаридов (целлюлозы, гемицеллюлоз, крахмала) являются важнейшими компонентами питания человека, животных и микроорганизмов и служат дешевым источником сахаров для удовлетворения постоянно возрастающей потребности в сырье пищевой, микробиологической, медицинской и химической отраслей промышленности Из глюкозы с помощью разнообразных химических, ферментативных и микробиологических процессов получают белковые и ферментные препараты, фруктозу и другие сахаристые вещества, аминокислоты, органические соединения разных классов, в том числе кислоты, спирты, антибиотики, важнейшие мономеры и т д Очевидно, что развитие химической и биохимической технологии приведет к значительному расширению ассортимента полезных продуктов С проблемой гидролиза полисахаридов тесно связана разработка новых подходов к биоконверсии энергии, поскольку гидролитическая стадия играет важную роль в получении газообразного топлива (биогаза) из растительной биомассы Особенно важной представляется возможность получения из глюкозы этанола с целью его использования в качестве топлива (или добавки к традиционному жидкому топливу) для двигателей внутреннего сгорания [c.4]

    Фуран (I) сравнительно просто может быть получен из фурфурола. Фурфурол легко образуется при кислотном гидролизе полисахаридов (содержащихся в оболочке семян овса) или других природных соединений, имеющих пентозосодержащие фрагменты (например, в капусте, кукурузных початках [11], соломе). Нагревание фурфурола в паровой фазе над такими катализаторами, как никель (280 ) [12] или известь (350°) [13] приводит к получению фурана с высоким выходом. [c.101]

    В ТОМ же году с другим природным полимером, а именно с гелем агара, работал Полсон [51]. Он также отметил, что способность молекул белка проникать в гель зависит от размеров молекул и концентрации геля. Однако, поскольку у природных полисахаридов крахмала и агара обнаружились многие недостатки, их применение в качестве сред для разделения ограничилось двумя вышеприведенными случаями. [c.24]

    Из глюкозидаз, действующих ва полисахариды, наиболее известны амилазы (см. Алшлаэы). Гидролиз других природных полиглюкозидов (целлюлозы, инулина, ксилана и др.) ускоряется соответствующими гликозидазами. [c.100]

    Широкое применение для исследования моно- и полисахаридов, как и других природных оптически активных веществ, находят хирально-оптические методы. При этом наряду с обычными измерениями ДОВ и КД используют и явление индукцированной хиральности , когда под действием хиральной полимерной матрицы появляются оптически активные полосы поглощения адсорбированных ахиральных соединений. Примером может служить появление в присутствии циклодекстрина полосы КД при 210 нм у нафталина [7], полосы в ИК-области у красителя гелиантина (метиловый оранжевый) [8]. [c.408]

    В качестве стабилизаторов используют природные или синтетические ВМС камеди (аравийскую и абрикосовую), белки, желатозу, слизи (алтея, льняного семени, салепа), природные полисахариды и комплексы, метилцеллюлозу, натрий-карбоксиметилцеллюлозу, поливинилпирролидон, полиглюкин, твины, спены и другие ПАВ, способные уменьшать поверхностную энергию в системе. При использовании стабилизаторов целесообразно применять их растворы, с которыми растирают суспендируемое вещестю. Не следует использовать излишне большие количества стабилизаторов, значительно увеличивающих вязкость суспензии. Соотношение между твердой фазой суспензии и ВМС зависит от степени пщрофобности и гидрофилизирующих свойств вещества. Количество стабилизатора, необходимое для стабилизации суспензии, определяется преимущественно эмпирически. В общем случае его колкчестю не должно превьппать количество суспендируемого вещества. [c.46]

    Глюкоза входит также в состав важнейших природных ди- и полисахаридов сахарозы, мальтозы, лактозы, клетчатки, крахмала. Довольно распространены в природе и некоторые глюкозиды, роль спиртового компонента (аглюкона) в которых могут играть такие соединения, как фенолы, циангидрины альдегидов и др. К глюко-зидам относятся, в частности, красящие вещества растений, обладающие сильным физиологическим действием сердечные глюкозиды, дубильные вещества. Примером может служить глюкозид амигда-лин .2oH2,0,iN. Он содержится в зернах горького миндаля и косточках других плодов. По своему строению он является глюкозидом дисахарида генциобиозы и циангидрина бензальдегида. При гидролизе кислотами амигдалин распадается на компоненты  [c.302]

    Две молекулы моносахарида могут соединяться друг с другом, отщепляя молекулу воды и образуя дисахарид, К дисахариду может таким же образом присоединиться третья молекула юнo(a-харида, затем четвертая и т. д. При большом числе соединившихся друг с другом молекул моносахаридов образуются полисахариды. Это высокомолекулярные природные вещества, важнейшп е представители которых — крахмал и клетчатка (целлюлоза). Ва-к-нейшие дисахариды — это сахароза (обычный сахар), лактоза (молочный сахар), мальтоза (солодовый сахар), целлобиоза (звено целлюлозы). [c.311]

    Живые огранизмы выделяют огромное количество органических соединений, которые более века привлекают внимание химиков-органиков. Некоторые из этих соединений являются небольшими молекулами (сахара, гидроксикислоты), тогда как другие представляют собой очень большие частицы (белки, полисахариды, нуклеиновые кислоты). Соединения и той и другой группы характерны для всех живых систем. Между этими крайними случаями находятся вещества, молекулы которых имеют средний размер и степень сложности. Некоторые из них обладают сильным физиологическим действием, например витамины. Довольно часто соединения такого типа являются основой для исследований, нацеленных на получение лекарственных препаратов в этих препаратах необходимое физиологическое действие, которым обладает природное соединение, проявляется с большей силой и специфичностью за счет синтетических соединений родственного строения. Такого рода исследования базируются на том факте, что физиологическая активность соединения однозначно связана с его молекулярной структурой. Сравнение взаимосвязи структура — активность внутри больши> групп органических соединений позволяет постепенно пoзнaт молекулярную топографию некоторых рецепторных центров живых тканях, которые взаимодействуют и с природными со динениями, и с их синтетическими аналогами. [c.352]

    Как известно, текстильно-вспомогательные вещества (ТВВ), широко используемые в текстильной промышленности и красильно-отделочном производстве, преимущественно состоят из ПАВ, многие из которых являются экологически опасными, и наличие их в сточных водах и водоемах является источником загрязнения окружающей среды. Поэтому создание и применение новых эффективных биоразлагаемых экологически безвредных ТВВ многофункционального действия, обладающих одновременно свойствами мягчителей, антистатических веществ, закрепителей красителей и другими полезными технологическими свойствами, является весьма актуальной проблемой. Для успешного решения этих задач значительный интерес представляет использование природного азотосодержагцего полисахарида-хитозана (ХТЗ), сочетающего в себе уникальные свойства (плёнкообразующие, загустителя, бактерицидное, биоразлагаемость, способность к комплексообразованию и т.д.), что создает реальные предпосьшки для получения на основе ХТЗ и ею водорастворимых производных ТВВ различного назначения. [c.114]

    Итак, синтез природных углеводных структур и их ближайших аналогов. В первую очередь, это синтез моносахаридов, природных гликозидов, олигосахаридов и полисахаридов. Олиго- и полисахариды, как мы помним, построены из остатков моносахаридов, соединенных 0-гликозидными связями. В природных гликозидах тем же типом связи моносахаридные остатки соединены с неуглеводными аглнконами. Поэтому в синтезе олиго- и полисахаридов или гликозидов задача химика сводится в конечном итоге к тому, чтобы соединить моносахаридные остатки друг с другом или с агликоном гликозидными связями. [c.118]

    В практике химической обработки буровых растворов большое значение имеет обширная и все увеличивающаяся группа реагентов на основе полисахаридов. В эту группу входят КМЦ и другие эфиры целлюлозы, крахмал, реагенты из природных растительных камедей и морских водорослей, продукты микробиологического синтеза и др. У этих реагентов есть много общего в составе, строении и свойствах. Схематически они представляют собой совокупности макромолекулярных цепей, образованных ангидроглюкознымп циклами различных углеводных остатков, скрепленных непрочными гликозидными связями, а между цепями — ван-дер-ваальсовыми силами, водородными связями или. поперечными мостиками. Обилие функциональных групп обусловливает реакционную активность цепей и придает им характер полиэлектролитов. Природа углеводных мономеров и их функциональных групп, степени замещения, полимеризации и ветвления, однородность полимера, а также характер связей, конформация цепей и структур определяют коллоидно-химические свойства этих реагентов. Все они различаются по стабилизирующей способности и обладают сравнительно невысокой термической, ферментативной и гидролитической устойчивостью. Из исходных полисахаридов их получают путем деполимеризации и введения достаточного количества функциональных групп, с тем, чтобы обеспечить водорастворимость и необходимый уровень физикохимической активности. Таким образом, свойства будущего реагента непосредственно связаны с природой и строением исходного полисахарида. [c.156]

    В настоящее время все большее внимание исследователей привлекают природные соединения - биополимеры, обладающие собственной физиологической активностью. К ним относятся такие чрезвычайно распространенные в природе вещества, как полисахарид целлюлоза и полиаминосахарид хитин. Одним из факторов, контролирующих механизм их биологической активности, является определяемая особенностями надмолекулярной структуры доступность реакционных центров для сольватирующих молекул растворителей. В этой связи проведенное в главе обобщение современных данных по строению кристаллических целлюлозы, хитина и хитозана (производное хитина) и анализ проблем растворения и сольватации этих веществ в различных растворителях являются актуальными и полезными для дальнейшего развития физикохимии углеводов и других сахаров. [c.7]

    Полисахариды — природные полимеры, которые можно рассматривать как продукты поликонденсации альдоз или кетоз. Полисахарид, состоящий, например, из гексоз, имеет общую формулу (СвНюОь) . На основании этой формулы можно очень мало сказать о строении этого полисахарида. Необходимо знать, какова природа моносахаридных звеньев и сколько их в каждой молекуле, как они связаны друг с другом, а также являются ли образую-Шлеся гигантские молекулы вытянутыми или разветвленными, закрученными или петлеобразными. [c.972]


Смотреть страницы где упоминается термин Другие природные полисахариды: [c.345]    [c.451]    [c.3]    [c.97]    [c.659]    [c.569]    [c.34]    [c.10]    [c.560]    [c.120]    [c.156]    [c.523]    [c.207]    [c.12]   
Смотреть главы в:

Органическая химия -> Другие природные полисахариды




ПОИСК





Смотрите так же термины и статьи:

Полисахариды



© 2025 chem21.info Реклама на сайте