Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сенсоры кондуктометрические

    Тип преобразователя определяется особенностью реакции, протекающей на электроде. Невозможно найти универсальный преобразователь на все возможные вещества. В технологии электрохимических сенсоров используются преобразователи различных типов потенциометрические, амперометрические, кулонометрические, кондуктометрические, полупроводниковые на основе оксидов металлов, ионоселективные полевые транзисторы и др. Для повышения избирательности на входном устройстве сенсора (перед чувствительным слоем) могут размещаться мембраны, селективно пропускающие частицы определенного заряда или размера. [c.552]


    Среди них наиболее широко применяются кондуктометрические полупроводниковые сенсоры на основе оксидов переходных металлов. Принцип действия полупроводниковых сенсоров оксидного типа основан на изменении состояния поверхностной структуры полупроводника вследствие адсорбции газа на его поверхности. Электроны адсорбированных молекул газа взаимодействуют с электронами и дырками в кристаллической решетке, что приводит к изменению поверхностного заряда. При этом общее число поверхностных состояний, которые вносят вклад в формирование поверхностного заряда, зависит от состава и парциального давления компонентов газовой среды, окружающей полупроводник. Изменение поверхностного заряда вызывает изменение сопротивления полупроводника, которое легко измерить. [c.559]

    Рассматривая ферменты как специфические химические преобразователи, переводящие определяемое вещество в форму, детектируемую физическими или химическими методами, удалось придумать и разработать новый класс сенсоров, для которых характерна чувствительность к биологическим соединениям. Перспективным путем повышения селективности и чувствительности и расширения возможностей этих устройств является комбинирование различных ферментов, например эстераз, дегидрогеназ и оксидаз с детекторами-полярографическими, кондуктометрическими, потенциометрическими, акустическими и оптическими. Б первых ферментных электродах ферменты физически удерживались на поверхности сенсора или в непосредственной близости от нее. Позже были предложены методы химической иммобилизации, осаждения и другие. Коферменты также физически или химически закрепляются на поверхности сенсора. Перевод фермента в нерастворимую форму как способ увеличения его времени жизни позволяют избежать осложнений, связанных с осмотическими явлениями в коллоидных растворах, особенно когда в ферментном электроде используется проницаемая для определяемого компонента мембрана В идеальном случае ферментный биосенсор должен работать непосредственно в неразбавленной цельной крови, подобно газовым и рН-электродам, в свое время произведшим революцию в анализе. [c.11]

    О биосенсорах, т. е. сенсорах, включающих биологический материал (рис. 1.4), впервые сообщалось на симпозиуме New York A ademy of S ien es в 1962 г. [6]. В этом сообщении было предложено использовать ферментные преобразователи, встроенные в мембраны (так, что получается подобие сандвича), чтобы сделать электрохимические сенсоры (pH, полярографические, потенциометрические или кондуктометрические) более совершенными. В результате получились сенсоры, специфически чувствительные к определенным субстратам, поскольку они детектировали образование продукта ферментативной реакции или расход одного из участвующих в этой реакции веществ. Описана, в частности, комбинация глюкозооксидазы с Ог-электродом Кларка для определения глюкозы по убыли содержания кислорода при превращении глюкозы в глюконовую кислоту и пероксид водорода. [c.14]


    Амперометрические методы определения мочевины были разработаны значительно позже, чем потенциометрические и кондуктометрические. Первый амперометрический мочевинный электрод, разработанный группой Сузуки в Японии, состоял из комбинации уреазной мембраны с нитрифицирующими бактериями, которые метаболически продуцируют аммиак и расходуют кислород (гл. 2). Расход кислорода измеряют, используя датчик типа электрода Кларка [48]. Описываемый сенсор содержит пять мембран и поэтому имеет относительно большое время отклика-2 мин для скоростных анализов или 7 мин для стационарных измерений. Характеристики сенсора вполне удовлетворительны отсутствует влияние буферного раствора коэффициент корреляции с оптическим методом равен 0,97 стабильно работает в течение 10 дней сигнал линейно зависит от концентрации в диапазоне от 2 до 200 ммоль/л. Однако из-за большого объема анализируемого раствора (50 мл) при высоких концентрациях и значительном разбросе показаний (коэффициент вариации равен 5% при концентрации 150 ммоль/л) этот метод применим только для анализа мочи. [c.266]

    Что касается применения кондуктометрии в биосенсорах вообще, авторы [13, 134, 135] недавно подчеркнули, что большинство реакций, используемых в потенциометрических и амперометрических ферментных электродах, например зависимые от концентрации мочевины изменения pH и р1 в электродах, содержащих уреазу, могут быть на том же уровне, или лучше, оценены кондуктометрически. Аналогично авторы [6] использовали связанные с ферментативной реакцией изменения емкости двойного электрического слоя симметричных металлических электродов как меру активности фермента или субстрата. Такие измерения стремятся проводить на одной частоте, не обсуждая вопрос о том, что в случае многочастотных измерегшй могли бы получиться более селективные и информативные сенсоры. [c.358]


Смотреть страницы где упоминается термин Сенсоры кондуктометрические: [c.559]   
Основы современного электрохимического анализа (2003) -- [ c.559 ]




ПОИСК





Смотрите так же термины и статьи:

Сенсоры



© 2025 chem21.info Реклама на сайте