Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пространственное разрешение рентгеновского излучения

    Для элементного анализа главным образом используют рентгеновскую спектроскопию. Ее преимуществами являются простая процедура количественной обработки, высокие отношения сигнал/шум (см. также рис. 10.2-10). Недостатки рентгеновского анализа в варианте АЭМ вытекают из чрезвычайно малого объема, в котором происходит взаимодействие. Например, для образца толщиной 10 нм при диаметре пучка 10 нм объем, в котором происходит возбуждение, составляет всего 10 мкм , что соответствует анализируемой массе приблизительно 10" -10 г. Кроме того, эффективность сбора рентгеновских лучей определяется пространственным углом детектора. Вследствие изотропного характера рентгеновского излучения только часть фотонов (10 -10" ) регистрируется детектором. Это ограничивает пределы обнаружения рентгеновского микроанализа до 10 °-10" г, если энергодисперсионные детекторы с большим углом сбора фотонов установлены близко к месту электронного воздействия. Пространственное разрешение (например, при получении профиля концентраций поперек межфазной границы) составляет величину порядка 10-20 нм. [c.338]


Рис. 7.4. Схематическое представление изменения траекторий 100 электронов в меди в зависимости от ускоряющего напряжения. Обратите внимание на пространственное разрешение генерируемого этими электронами рентгеновского излучения [124]. Рис. 7.4. <a href="/info/1012491">Схематическое представление</a> изменения траекторий 100 электронов в меди в зависимости от ускоряющего напряжения. Обратите внимание на пространственное разрешение генерируемого <a href="/info/716405">этими электронами</a> рентгеновского излучения [124].
    Образцы для рентгеновского микроанализа удобно разбить на шесть различных типов. Различные типы образцов имеют разное пространственное разрешение в рентгеновском микроанализе, зависящее от объема области генерации излучения в образце. Этот объем является как функцией диаметра пучка и глубины проникновения электронов, так и рассеяния электронов и рентгеновского излучения внутри образца. [c.268]

    Методом зондовой сканирующей микроскопии можно проводить комплексное изучение поверхности полимеров для оценки пространственного распределения эластичности, магнитных, электрических, оптических и химических характеристик поверхности [12]. При наличии спектрометра рентгеновского излучения, снабженного компьютерной системой, можно осуществить количественный элементный анализ пробы с разрешением I мкм. [c.358]

    Обычно различают схемы сбора, использующие импульсное или непрерывное рентгеновское излучение. В принципе, при равной средней интенсивности излучения они равноценны, однако требуют отличающихся технических решений для сохранения достаточно высокого пространственного разрешения. С целью сокращения времени сбора измерительных данных возможно использование многих источников рентгеновского излучения. [c.156]

    Как показано на рис. 3.8, характеристическое рентгеновское излучение генерируется в значительной части области взаимодействия, образованной рассеянными в твердом теле электронами. Чтобы предсказать глубину, на которой возникает рентгеновское излучение, или глубину генерации рентгеновского излучения , и размер источника рентгеновского излучения (пространственное разрешение в рентгеновском излучении), нужно знать глубину проникновения электронов. Как было показано при рассмотрении глубины проникновения электронов, уравнения для пробега электрона в общем случае имеют вид (например, пробег по Канайе и Окаяме [уравнение (3.10)]) [c.80]


    Предыдущий пункт приводит прямо к обсуждению минимально возможного размера зонда для рентгеновского анализа. Для каждого типа источника и напряжения, как детально показано в гл. 2 (рис. 2.16), для любого заданного размера зонда существует максимальное значение тока. Для обычных источников из вольфрама ток зонда изменяется пропорционально диаметру луча в степени 8/3 И имеет при 20 кВ типичные значения Ю А для зонда диаметром 20 нм (200 А), 10 А — для 100 нм (1000 А) и 10 А —для 1000 нм (10000 А). В спектрометре с дисперсией по энергии три помощи детектора диаметром 4 мм, находящегося на расстоянии 1 см от образца из чистого никеля, можно получить скорость счета около 10 имп./с для угла выхода 35° при диаметре зонда 20 нм (10 А) и 100%-ной квантовой эффективности. Как следует из рис. 5.33, скорость счета 10 имп./с является слишком высокой для реализации максимального энергетического разрешения, так что оператор должен либо отодвинуть детектор, уменьшить постоянную времени спектрометра с дисперсией по энергии, либо уменьшить ток зонда, перейдя к пятну меньшего размера. С другой стороны, соответствующая скорость счета для спектрометра с дисперсией по длинам волн составляла бы около 100 имп./с, что слишком мало для практического использования. Для массивных образцов (толщиной более нескольких микрометров) пространственное разрешение при химическом анализе не улучшается при использовании зондов с диаметром значительно меньше 1 mikm, поскольку объем области генерации рентгеновского излучения определяется рассеянием и глубиной проникновения электронов луча, а не размером зонда. Это демонстрируется на рис. 5.54, где показана серия расчетов рассеяния электронов и распределения генерации рентгеновского излучения, выполненных по методу Монте-Карло для зонда диаметром 0,2 мкм и гипотетического включения ТаС размером 1 мкм в матрицу пз Ni — Сг. Легко видеть, что траектории электронов и, следовательно, область генерации рентгеновского излучения, особенно при высоком напряжении, заметно превышают 1 мкм или 5- кратный диаметр зонда. Предельное значение диаметра зонда при исследовании таких образцов ниже нескольких сотен нанометров, поэтому полный анализ можно выполнить при форсированпи тока зонда до 10 нА и использова- [c.262]


Смотреть страницы где упоминается термин Пространственное разрешение рентгеновского излучения: [c.94]    [c.155]    [c.75]    [c.151]    [c.164]    [c.75]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.80 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Рентгеновское излучение



© 2025 chem21.info Реклама на сайте