Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ рентгеновский структурны

    Представлены результаты исследований методами структурного анализа, рентгеновской фотоэлектронной спектроскопии, электронной микроскопии, ЭПР и магнитной восприимчивости активированных углеродных волокон (АУВ) с различной удельной поверхностью. [c.96]

    Метод поликристалла получил широкое распространение при решении прикладных задач рентгеновского структурного анализа, таких, как идентификация кристаллических веш,еств, фазовый анализ смесей, измерение периодов кристаллических решеток ИТ. п. Достаточно подробно эти вопросы применения метода поликристалла рассмотрены в работах [8, 9]. [c.119]


    Рассмотренные здесь пути решения фазовой проблемы структурного анализа представляют собой резонансный аналог используемых в практике рентгеновского структурного анализа, метода изоморфных замещений и метода аномальной дисперсии. [c.238]

    Можно сказать иначе в кристаллах льда каждый атом кислорода связан с четырьмя другими атомами кислорода, причем связь осуществляется через водородный атом. Все такие связи между атомами кислорода равноценны. Расстояния между ядрами кислородных атомов равны 2,76 А. Этому отвечает радиус молекулы 1,38 А, если принять ее шарообразной. Связи распределяются под тетраэдрическим углом (109,5°) рис. 5). Постоянные кристаллической решетки льда надежно определены с помощью рентгеновского структурного анализа. [c.9]

    В большой группе приборов для структурного и фазового анализов рентгеновское излучение регистрируется с помощью различного типа счетчиков. В этой области около 20-30 лет назад произошли существенные и принципиальные изменения, связанные с заменой ионизационных счетчиков Гейгера-Мюллера на более совершенные пропорциональные и сцинтиляционные счетчики. Принципиальное преимущество двух последних типов счетчиков - зависимость регист- [c.21]

    Главнейшие методы изучения сплавов — микроскопические исследования, рентгеновский структурный анализ и термический анализ. [c.187]

    Методами рентгеновского структурного анализа доказано, что в жидкостях есть некоторая упорядоченность пространственного расположения молекул в отдельных микрообъемах. Вблизи каждой молекулы жидкости наблюдается закономерное расположение других молекул — так называемый ближний порядок. При удалении от нее на некоторое расстояние эта закономерность нарушается. Во всем же объеме жидкости порядка в расположении частиц нет. [c.18]

    Статистическая теория Ж. Совр. мол. теории Ж. основаны на экспериментально установленном иаличии статистич. упорядоченности взаи.много расположения ближайших друг к другу молекул - т. иаз. ближнего порядка. Положения и ориентации двух или более. молекул, расположенных далеко друг от друга, оказываются статистически независимыми, т.е. дальний порядок в Ж. отсутствует. Характер теплового движения молекул и составляющих их атомов, а также структура ближнего порядка, координац. числа и др. характеристики исследуются в осн. дифракционными методами - рентгеновским структурным анализом, нейтронографией, а также методами акустической и диэлектрической спектроскопии, ЯМР, ЭПР и др. [c.154]

    Строение орг. соед. устанавливают с помощью методов анализа орг. соед., включающих помимо элементного анализа такие физ. методы, как ЯМР, масс-спектрометрия, ИК спектроскопия, рентгеновский структурный анализ, электронография и др. развиваются также методы выделения, очистки и разделения орг. в-в, напр. разл. виды хроматографии. [c.396]


    Фазовый анализ, позволяющий качественно и количественно анализировать кристаллич. формы орг. соед., проводят с помощью рентгенографии и электронографии. Рентгеновский структурный анализ позволяет устанавливать с высокой точностью структурную ф-лу орг. в-ва, определить длины связей между атомами и углы между связями. [c.403]

    Рентгенографич. методы позволяют прецизионно измерять параметры кристаллич. решетки (см. Рентгеновский структурный анализ), исследовать процессы образования и распада твердых р-ров, устанавливать их тип и концентрацию, определять величины макронапряжений в изделиях, коэф. теплового расширения и их анизотропию, изучать процессы диффузии, исследовать фазовые диаграммы, определять в них границы р-римости фаз (см. Рентгеновский фазовый анализ). [c.242]

    Количеств, информацию о строении молекул дают дифракционные методы (рентгеновский структурный анализ, электронография и нейтронография), а также микроволновая спектроскопия. Качеств, сведения о строении молекул можно получить по колебательным спектрам, масс-спектрам, спектрам ЯМР и ЭПР (см. Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Ядерный магнитный резонанс, Масс-спектрометрия, Электронный парамагнитный резонанс). [c.445]

    Установление методом рентгеновского структурного анализа строения биологически активных веществ (витамина В12 и др.) [c.776]

    Строение кристаллов моносахаридов исследовалось методами рентгеновского структурного анализа [32]. В табл. 2.2 приведены длины связей, образуемых в кристаллической структуре некоторых моносахаридов. В табл. 2.3 представлены рекомендованные [33] значения плотностей и молярных объемов некоторых моносахаридов. Из приведенных в табл. 2.3 данных следует, что в кристаллическом состоянии Р-аномеры (по крайней мере р-галактоза и р-глюкоза) имеют более ажурную структуру. Переход от смеси конформеров к пиранозной форме приводит у а-аномеров к довольно существенному уплотнению структуры, а у Р-аномеров, напротив, к незначительному ее разрыхлению. [c.68]

    С а т а н о в с к и й И. Я. Применение рентгеновского структурного анализа к изучению углеродистого вещества кокса. Труды Днепропетровского металлургического института. Химия и химическая технология. Металлургиздат, 1949. [c.137]

    Основные носители парамагнетизма содержатся в асфальтенах и почти не содержатся в маслах, смолы по их содержанию занимают промежуточное положение. Соединения парафинового ряда способствуют уменьшению числа свободных радикалов. По мере углубления окисления и увеличения молекулярного веса окисленных битумов интенсивность сигналов ЭПР возрастет, что объясняется ростом содержания асфальтенов и числа свободных радикалов. Если содержание свободных радикалов в окисленном битуме БН-П принять за 100%, то в битумах БН-Ш и БН-1У оно составляет соответственно 170 и 180%[91]. Между температурой размя1-че-ния и интенсивностью сигналов ЭПР для дорожных окисленных и компаундированных битумов, полученных ич Усть-Балыкской нефти, установлена прямая зависимостъ [92]. На основании рентгеновского структурного анализа было показано, что асфальтены и карбены, выделенные из природных асфальтов, являются кристаллическими веществами. Некоторые из них имеют признаки цепной ориентации, фафитовая структура у них отсутствует. [c.36]

    В соответствии с этим применяются три различных способа рентгеновского структурного анализа. В одном из них — методе Лауэ пучок рентгеновских лучей всевозможных длин волн проходит через диафрагму и падает на поверхность кристалла под некоторым определенным углом (рис. 13). В потоке лучей всегда найдутся такие, длины которых удовлетворяют условию (а), при этом в результате отражения на фотографической пластинке, наряду с центральным пятном от непреломившегося луча, получаются симметрично расположенные вокруг него пятна, каждое из которых соответствует каким-нибудь кий. Лауэграмма (рис. 14) дает возможность определить симметрию кристалла и его ориентировку. Расшифровка лауэграмм — достаточно сложная задача. [c.57]

    Рентгеновский структурный анализ компонентов битума заключается в исследовании его атомной структуры путем изучения дифракции и рассеяния рентгеновских лучей. При помощи рентгеноскопии установлено, что битумы, хорощо зарекомендовавщие себя при практическом использовании, имеют небольщой угол рассеивания и что между содержанием серы и углом рассеивания имеется взаимосвязь с возрастанием содержания серы в битуме частицы дисперсной фазы битума укрупняются, угол рассеивания уменьшается. [c.26]

    На основании рентгеновского структурного анализа было показано, что асфальтены и карбены, выделенные из природных асфальтов, являются кристаллическими веществами. Некоторые из них имеют признаки цепной ориентации, графитовай структура у них отсутствует. [c.26]

    Наиб, точные сведения о В. с. дает рентгеновский структурный анализ. Для оценки содержания упорядоченных ее видов в р-рах использ. оптич. методы — дисперсию оптич. вращения и круговой дихроизм. в М Степанов. [c.109]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]


    Как наука К. сформировалась вскоре после 1912, когда М. Лауэ, В. Фридрих и П. Книппинг открыли дифракцию рентгеновских лучей, быстро превратившуюся в мощный метод исследования строения твердых в-в-рентгеновский структурный анализ. В послед, неск. лет У. Г. Брэгги, У. Л. Брэгги и др. изучили кристаллич. структуры мн. ме- [c.536]

    Строение М. изучают разл. эксперим. методами. Электронография, нейтронография и рентгеновский стру1 урный анализ позволяют получать непосредств. информацию о структуре М. Электронографич. метод, исследующий рассеяние электронов на пучке М. в газовой фазе, позволяет рассчитать параметры геом. конфигурации для изолированных сравнительно простых М. Нейтронография и рентгеновский структурный анализ ограничены анализом структуры М. либо отдельных упорядоченных фрагментов в конденсир. фазе. Рентгенографич. исследования кроме указанных сведений дают возможность получить количеств. [c.108]

    Метод М. м. позволяет получать информацию для полного описания геометрии разл. конформеров в осн. состоянии и в седловых точках на пов-сти потенц. энергии (ППЭ), а также геом. строения в кристалле. Определяют также теплоты образования, энергии напряжения, энергии отдельных конформеров и высоты барьеров для конформац. превращений, частоты колебаний, распределения электрич. заряда, дипольные моменты, хим. сдвиги в спектрах ЯМР, скорости хнм. р-ций и др. Диапазон применения М.м. велик от простых молекул до полисахаридов и белков. В сочетании с др. методами, в частности газовой электронографией и рентгеновским структурным анализом, надежность и точность определения геом. характеристик повышается. [c.114]

    Фазовые переходы М. к.-плавление, возгонка, полиморфные переходы (см. Полиморфизм)-ироясхоаят, как правило, без разрушения отдельных молекул. М. к. являются частным случаем ван-дер-ваальсовых кристаллов, к к-рым относятся также цепочечные и слоистые кристаллы, где посредством ван-дер-ваальсовых сил соединены бесконечные цепи (напр., орг. полимеры) или слои (напр., графит). Структуру М. к., как и др. кристаллич. в-в, устанавливают с помощью рентгеновского структурного анализа, для изучения динамики молекул в М. к. используют колебат. спектроскопию и неупругое рассеяние нейтронов. [c.117]

    СтруктурнаяН. основана на дифракции нейтронов при их рассеянии атомными ядрами. Амплитуда рассеяния нейтронов (в отличие от рентгеновских лучей) не зависит систематически от атомного номера элемента. Поэтому по сравнению с рентгеновским структурным анализом структурная Н. дает возможность надежнее и точнее определить координаты атомов Н. и др. легких элементов в присут. тяжелых и различать атомы с близкими атомными номерами (напр., Fe, Со и Мп в сплавах и хим. соед.) или даже изотопы одного элемента (чаще всего Н и D). [c.206]

    Диапазон энергий квантов С.и.-от долей эВ до сотен кэВ (т. е. включает область мягкого рентгеновского излучения). С. и. характеризуется непрерывным спектром, высокой степенью поляризации, большой интенсивностью (превосходит на неск. порядков излучение в рентгеновских трубках), чрезвычайно малой расходимостью, малой длительностью импульсов (до 100 пс). Эти св-ва позволяют использовать С. и. в спектроскопии, рентгеновском структурном анализе, для изучения оптич. активности молекул, возбуждения люминесценции, инициирования фотохим. р-ций и др. Так, благодаря большой интенсивности источников С. и. удалось зарегистрировать мол. спектры поглощения с разрешением 0,003 нм. Разрабатываются импульсные методы спектроскопии, использующие С. и. для исследования метастабильных продуктов фотолиза, механизма сверхбыстрых р-ций и т. п. Рентгеновский структурный анализ биол. объектов, в частности монокристаллов белков, использующий С. и., позволяет значительно сократить время регистрации рентгенограмм, уменьшить радиац. нагрузки на образец. С. и. применяют также, напр., для фотолитографии, в произ-ве интегральных схем. [c.357]

    С.х. базируется на данных таких эксперим. методов, как рентгеновский структурный анализ, нейтронография, электронография, микроволновая спектроскопия и спектроскопия комбинац. рассеяния, ИК спектроскопия, УФ и фотоэлектронная спедстроскопия, резонансные методы (ЯМР, ЭПР, мёссбауэровская спектроскопия, ядерный квадрупольный резонанс), а также типичных физ.-хим. методов-термохимии, адсорбции, катализа и т.п. [c.445]

    Для С. а. наиб, часто применяют рентгеновский структурный анализ (РСА) и газовую электронографию. Первый используют для определения строения соед. в кристаллич. состоянии он основан на дифракции рентгеновских лучей, проходящих через монокристалл. Интенсивности дифракц. лучей 1(к к I) связаны с координатами атомов ур г в элементарной ячейке соотношениями  [c.445]

    Т. р. как внедрения, так и замещения м. б. неупорядоченными-со статистич. распределением атомов в решетке либо частично или полностью упорядоченными, с определенным расположением атомов разного сорта относительно друг друга. Упорядоченные Т.р. иногда наз. сверхструктурами. В нек-рых случаях в Т. р. атомы одного сорта могут образовывать скопления, к-рые, в свою очередь, могут определенным образом упорядочиваться или ориентироваться в данном направлении. Т. обр., Т. р., будучи истинно гомогенным в макроскопич. масштабе, т.е. система, находящаяся в термодинамич. равновесии, м.б. неоднородной при рассмотрении на микроуровне. Эксперим. данные об упорядочении Т. р. получают в осн. при использовании рентгеновского структурного анализа. Упорядоченность Т. р. и ее изменения в процессах старения важны для материаловедения (см. Сплавы). [c.507]

    Выяснение механизма образования Т. р. требует применения физ. методов исследования, в частности рентгеновского структурного анализа. К числу наиб, часто применяемых методов исследования Т. р. относится рентгенография порошков. Параметры кристаллич. решетки Т. р. линейно зависят от состава (Л. Вегард, 1921) реально наблюдаются отклонения от этого правила. Широко используют также измерения плотности согласно правилу Ретгерса (1889), плотность, а также молярный объем аддитивно зависят от концентрации. Измерение т-р фазовых переходов (см. Термография) позволяет строить диаграммы р-римости с их последующим физико-химическим анализом. [c.507]

    Глубокие исследования позволили сформулировать представления о твердых горючих ископаемых, в первую очередь каменных углях, как о прир. высокомол. соединениях (см. Гидрогешзация угля. Каменные угли), а о бурых углях и торфе как о смесях в осн. битумов и гуминовых к-т. Эги представления обусловили применение на разл. этапах разви-. тия У. разных методов исследований, среди к-рых особенно распространены рентгеновский структурный анализ, ИК и масс-спектроскопия, электронная микроскопия, ЭПР, 5ШР, радиационные, химические. [c.30]

    Структуру Ф. изучают методами хим. модификации, рентгеновского структурного анализа, спек1роскопии. Ценные результаты получены методом сайт-специфичного мутагенеза, основанного на направленной замене аминокислот в белковой молекуле методами генетической инженерии. К кон. 20 в. известно и охарактеризовано ок. 3000 Ф. [c.83]


Библиография для Анализ рентгеновский структурны: [c.245]   
Смотреть страницы где упоминается термин Анализ рентгеновский структурны: [c.600]    [c.247]    [c.211]    [c.506]    [c.528]    [c.543]    [c.548]    [c.653]    [c.409]    [c.419]    [c.441]    [c.451]    [c.776]    [c.84]   
Химический энциклопедический словарь (1983) -- [ c.306 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ структурный

Принцип устройства рентгеновских установок дм структурного и фазового анализа

Рентгеновский анализ структурных изменений при термической обработке стали и других сплавов

Структурный анализ рентгеновская дифракция

Типы рентгеновских аппаратов для структурного анализа, выпускаемые в СССР



© 2025 chem21.info Реклама на сайте