Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность разрыва полимеров

    В отсутствие химического взаимодействия со средой при наличии достаточно больших напряжений растрескивание и разрыв полимеров сопровождаются разрушением как химических, так и физических связей. Однако в присутствии химически активной среды помимо процессов, сопровождаюш,ихся разрывом химических связей, идут реакции присоединения, замеш,ения и другие, не вызывающие деструкции молекул полимера. Поэтому не во всех случаях одновременное воздействие химически активной среды и напряжения вызывает растрескивание полимера. Если происходит очень интенсивное взаимодействие полимера со средой, сопровождающееся полным химическим перерождением материала (например, действие концентрированной азотной кислоты на НК), на его поверхности образуется совершенно разрушенный (порошкообразный или липкий) слой. При действии на напряженные резины из НК и СКБ брома, иода, соляной и серной кислот, фтористого водорода сопровождающемся, как известно, реакциями присоединения, замещения и циклизации, на поверхности образуется жесткий слой без трещин, который сморщивается после снятия с образцов напряжения (рис. IV.5). [c.94]


    Довольно давно стало известно, что температурная зависимость степени деструкции НК при пластикации проходит через минимум [118] примерно при 115 °С. На рис. 7.30 кривые и 2 построены по результатам изучения механической и окислительной деструкции каучука [588]. По мере увеличения температуры пластикации вязкость каучука и растворимость кислорода в нем уменьшаются. Одновременно менее заметной становится деструкция стабилизированного каучука под действием сдвига и снижается скорость разрушения. При дальнейшем росте температуры холодная пластикация постепенно переходит в горячую, при которой разрыв цепей становится преимущественно окислительным. В процессе перемешивания при пластикации все новые поверхности частиц полимера приходят в контакт с кислородом. При введении в каучук акцепторов радикалов удается избежать наложения двух механизмов деструкции. Вплоть до 140 °С окислительной деструкции не происходит [515, 588]. Отрицательный температурный коэффициент и отсутствие температуры начала деструкции этого полимера отчетливо видны на рис. 3.5. [c.78]

    Среди прочих видов защиты на основе полимеров следует отметить применение эпоксидных смол, обладающих наилучшими адгезионными свойствами, позволяющими применять их для склеивания различных материалов. Полисульфидная модифицированная форма эпоксидов позволяет скреплять новый бетон со старым при прочности соединительного шва на разрыв больше, чем прочность хорошего бетона. Трещины в бетонном полу могут заделываться смесью щебня и эпоксидной смолы. Эпоксиды часто используются для покрытия полов. Наполненные абразивным материалом они образуют износостойкие не-прилипающие поверхности. [c.227]

    Прочность характеризует сопротивление материалов разрушению под действием внешних сил. Под разрушением полимера понимается разрыв его на части (нарушение сплошности), т. е. разрушение — процесс, приводящий к образованию новых поверхностей раздела .  [c.280]

    Разрыв макромолекул в напряженном ориентированном полимере приводит к рассеиванию упругой энергии концевых участков макромолекул, которые могут содержать до десятков несущих связей. Следует отметить также, что образованная при разрыве связей поверхность полимера включает в себя появившиеся свободные радикалы, обладающие дополнительной энергией. Высказывается предположение об активирующем влиянии свободных радикалов на процесс роста трещины за счет их химической активности [61]. [c.292]


    Гриффита и Ребиндера. На границе перехода от сплошности к свободной поверхности (штриховая линия) происходит разрыв между атомами (у полимеров рвутся связи С—С или же другие химические связи цепей). В момент, зафиксированный на рис. 11.6, атомы 1—6 находятся еще в объеме тела, а 7—11 и далее — на свободных поверхностях следовательно, последующий акт разрыва связи сводится в основном к переходу 6—7. [c.295]

    Механизм разрушения, обозначенный в табл. 11.2 как вязко-упругий, характеризуется протеканием процессов деформационного микрорасслоения материала на тяжи, подобно микрорасслоению полимера в трещинах серебра , но этот процесс выражен более отчетливо. По мере углубления зоны разрушения один за другим образуются и рвутся тяжи. Разрыв отдельных тяжей происходит в различных местах по их длине, поэтому после сокращения концов тяжей на поверхностях разрушения возникают бугорки и впадины, образующие в совокупности шероховатую поверхность. Образование тяжей связано с преодолением в основном межмолекулярных связей, а механизм медленного разрыва эластомеров в целом состоит из элементарных актов, включающих как преодоление межмолекулярного взаимодействия при образовании тяжей, так и последующий разрыв химических связей при обрыве тяжей. Основной вклад в долговечность эластомеров дает медленная стадия разрушения, где скорость процесса разрушения лимитируется не разрывом химических связей, а вязкой деформацией в микрообъемах, приводящей к микрорасслоению материала. [c.336]

    Существует много методов сварки полимеров, различающихся по способу нагрева и по другим особенностям процесса. Нагрев может осуществляться горячим воздухом и инертным газом, контактом с горячей поверхностью металла или высокочастотным нагревом и некоторыми другими путями. Своеобразные возможности открываются в результате применения для данной цели радиации различного вида. Происходящий при этом частичный разрыв связей в молекулах полимера сопровождается образованием новых связей между молекулами, принадлежащими соединяемым деталям. [c.232]

    Спектр этой поликарбонатной поверхности изменяется разительно, если полимер подвергнуть действию кислородной плазмы. Обнаруживается большое число фрагментных пиков, образующихся в результате расщепления цепи и отражающих разрыв молекулярных связей в полимере под действием плазмы. Если поверхность очистить водой, в спектре будет отражено это обстоятельство, т. е. фрагменты, сформированные в плазме, являются водорастворимыми. [c.360]

    При хранении и переработке полимерных материалов, а также при эксплуатации изделий из них полимеры подвергаются воздействию различных факторов — тепла, света, проникающей радиации, кислорода, влаги, агрессивных химических агентов, механических нагрузок. Эти факторы, действуя раздельно или в совокупности, вызывают в полимерах развитие необратимых химических реакций двух типов деструкции, когда происходит разрыв связей в основной цепи макромолекул, и структурирования, когда происходит сшивание цепей. Изменение молекулярной структуры приводит к изменениям в эксплуатационных свойствах полимерного материала теряется эластичность, повышается жесткость и хрупкость, снижается механическая прочность, ухудшаются диэлектрические показатели, изменяется цвет, гладкая поверхность становится шероховатой, а иногда на ней появляется налет порошкообразного вещества. Изменения во времени свойств полимеров и изделий из них называют старением. [c.66]

    При температурах, превышающих Гот, когда предел вынужденной эластичности обращается в нуль, полимер испытывает эластический разрыв, который наиболее характерен для каучукоподобных тел (эластомеров), эксплуатируемых при температурах выше 5ст Первая, медленная стадия процесса начинается с образования центра разрыва, откуда медленно растет надрыв, подобно трещине при хрупком разрушении (рис 114)). По мере возрастания надрыва повышается напряжение и материал упрочняется вследствие усиливающейся ориентации макромолекул. По достижении некоторого критического напряжения наступает вторая, быстрая стадия, для которой характерна большая скорость распространения фронта разрыва вплоть до окончательного разрушения образца На поверхности разрыва обнаруживается шероховатая зона, связанная с медленной стадией, и зеркальная — с быстрой. [c.421]

    Изучение рельефа поверхностей разрыва твердых тел, в том числе твердых полимеров (кристаллических и аморфных), а также наблюдение роста трещин в нагруженном материале методами микроскопии и другими приводит к выводу, что во всех твердых телах трещины растут при напряжениях растяжения, значительно меньших обычно наблюдаемого предела прочности. Мюллер , по-видимому, первый обнаружил, что у стекол наблюдаются две стадии разрыва. Первая стадия связана с медленным ростом первичной трещины, приводящей к образованию зеркальной поверхности разрыва вторая—с прорастанием первичной и вторичных трещин со скоростью, близкой к скорости звука, с образованием шероховатой зоны. На первой стадии скорость роста трещины зависит от напряжения (рис. 8), температуры и среды, в которой находится образец. При температуре жидкого воздуха зеркальная часть на поверхности разрыва практически отсутствует, разрыв сразу принимает катастрофический характер, а временная зависимость прочности практически не наблюдается. [c.27]


    Естественно, что характерные механические свойства полимеров в высокоэластическом состоянии проявляются и в процессе разрыва. Так же как и разрушение полимеров в стеклообразном состоянии, эластический разрыв слагается из двух стадий — медленной и быстрой, но начальная, медленная стадия в отличие от хрупкого разрыва сопровождается образованием шероховатой, а быстрая — зеркальной зоны на поверхности разрыва. Соотношение поверхностей зеркальной и шероховатой зон зависит от длительности процесса разрушения. Уменьшение статической и динамической нагрузок или скорости растяжения сопровождается увеличением длительности процесса разрыва соответственно увеличивается часть поверхности разрыва, занимаемая шероховатой зоной (рис. П.33). При медленном разрыве почти всю поверхность занимает шероховатая зона, а зеркальная зона практически исчезает. При быстром разрушении всю поверх- [c.101]

    Необходимым условием для образования поверхности раздела является разрыв всех макромолекул, пересекающих в момент разрыва полимера образующуюся поверхность. По Г. А. Патрикееву, независимые механические разрывы секций каркаса вызывают размягчение резины, но не приводят к образованию поверх- [c.251]

    Литье под давлением. Переработку фторопласта-4М, 4МБ и 4МБ-2 литьем под давлением производят при температуре от 250 до 370°С (по зонам), давлении впрыска 500—1500 кгс/см и небольшой регулируемой скорости впрыска. Скорость течения расплава полимера должна быть постоянной. Форма должна подогреваться до 200—250 °С. Усадка полимера в форме в зависимости от толщины стенок и условий формования колеблется от 0,9 до 1,5%. При любом размере сопла, по которому течет расплав, скорость сдвига прямо пропорциональна скорости движения расплавленной массы полимера, зависящей, в свою очередь, от скорости движения поршня. При превышении скорости сдвига расплава критического значения (выше 5—10 с ) происходит разрыв расплава с появлением на поверхности рыбьей чешуйки и расслоения. Для предотвращения разрыва расплава следует уменьшить скорость течения расплава и применить литники большего диаметра. [c.153]

    Наиболее опасными дефектами в полимерных материалах, испытывающих хрупкое разрушение, являются микротрещины и субмикротрещины, которые существуют до приложения внешнего напряжения. Очевидно, что прорастание таких микротрещин, которое происходит на первой (медленной) стадии процесса разрушения, и определяет долговечность материала. Рассмотрим разрыв межатомной связи в вершине микротрещины. Для того чтобы его осуществить, необходимо преодолеть потенциальный барьер высотой и (рис. 64). Выше уже говорилось о том, что наряду с разрывом связей между атомами возможен н процесс восстановления связей. Для того, чтобы последний осуществился, необходимо преодолеть потенциальный барьер и, величина которого меньше и 11 <и), если полимер находится в нена-груженном состоянии. На рис. 64 представлена зависимость потенциальной энергии атомов в вершине микротрещины в зависимости от расстояния между ними. Минимум потенциальной энергии, расположенный слева, соответствует равновесному положению атомов вдали от трещины второй минимум, расположенный справа, соответствует равновесному положению атомов, которые после разрыва оказались на свободной поверхности образца. Поверхностная потенциальная энергия твердого тела, отнесенная к двум атомам, между которыми разорвана связь, равна разности  [c.295]

    Образование озонных трещин на поверхности растянутого полимера происходит по закону случая, а скорость их роста постоянна [41]. С химической точки зрения этот процесс состоит из непосредственного взаимодействия озона с двойной связью и последующего разрыва цепи. Значительно труднее объяснить то, что разруп ение происходит в относительно небольшом числе точек. Одно из объяснений заключается в том, что растяжение механически активирует двойные связи разрыв цепи в таких местах приводит к образованию зародышей трещин по наиболее напряженному месту, которым является дно образуюи ейся трещины [39[. Другим возможным объяснением является то, что свежая поверхность ка дне вновь образовавшейся трещины особенно чувствительна к действию озона, так как она не запдищена продуктами окисления или адсорбированными газами. Объяснение крайней чувствительности растянутых образцов каучука и сравнительной стабильности отрелаксированных образцов основывается на предположении о разрыве цепей на радикалы как одной из стадий процесса озонирования [43]. В отрелаксированном каучуке эти радикалы могут рекомбинироваться, в то время как в каучуке, находящемся под напряжением, они неизбежно удаляются друг от друга. Такое поведение объясняет также увеличение количества трещин при повышении тедшературы и увеличении удлинения, поскольку оба эти фактора в большей степени благоприятствуют разделению радикалов, чем их рекомбинации. [c.205]

    Описано влияние режима переработки на диэлектрические свойства пресс-материалов получены пресс-материалы с повышенными электроизоляционными свойствами на древесном наполнителе изучена деформация и разрыв полимеров при высокоскоростном ударе проведен анализ высокоупругих напряжений 5 . Получены алкилфенолы с длинной боковой цепью и изучены их фрикционные свойства Описано изготовление абразивных изделий ss7-659 антифрикционных материалов литьевых форм 5 , пластмасс с металлическим наполнителем пресс-порошков получение литьевых полимеров . , полимеров в виде гранул и полимеров для заделки пор на металлических поверхностях . Продолжались работы по применению фенол-формальдегидных полимеров для производства слоистых пластиков 572-574 о изготовлению на их основе труб сверхзвуковых самолетов оболочковых форм [c.903]

    Следует отметить, что для полимерных связующих с высокой адгезией к поверхности стекла наряду с адгезионным разрушением склеек (по поверхности раздела полимер — волокно) наблюдается также и когезионный разрыв самих стеклянных волокон. Это когезионное разрушение склеек имеет место при напряжениях, превышающих величину напряжений при адгезионном разрушении склеенной системы. Был разработан метод расчета, позволяющий определить величину поправки для получения значения адгезионной прочности с учетом обоих типов разрушения склеек — адгезионного и когезионного. Метод расчета этой поправки и обоснование правомерности такого расчета изложены в работе Ю. А. Горбаткиной и Т. Н. Хазановича [219]. Изменение величины адгезии в результате учета когезионных разрушений склеек может колебаться в значительных пределах — от Н-10 до +50%. В этой книге все величины адгезионной прочности приведены при учете только адгезионного характера разрушения склеек. [c.235]

    ПА-6 в спектр кислотных радикалов Бекман и Деври установили, что 50 % всех повреждений происходят в слое толщиной менее 0,6 мкм от поверхности. Оставшиеся 50 % цепных радикалов получены на глубине до 3 мкм от поверхности. С учетом морфологии деградирующих полимеров, механики процесса измельчения и подвижности первичных свободных радикалов можно представить пространственное распределение вторичных радикалов. В данном случае с точки зрения прочности кристалла, по-видимому, маловероятно вытягивание и разрыв отдельных цепей ПА. Как уже рассматривалось в гл. 5, цепь ПА-6, уложенная в кристаллите более чем на 1,7 нм своей длины, будет скорее разрываться, чем вытягиваться из кристаллита. Вытягивание из поверхности разрушения целых микрофибрилл будет происходить с весьма большой вероятностью и сопровождаться разрушением межфибриллярных проходных цепей с образованием повреждений в поверхностном слое на глубине до 1 мкм. Это особенно важно для сильной пластической деформации материала перед растущей поверхностью разрушения. Перемещение свободных радикалов, конечно, вносит свой вклад в углубление слоя со следами повреждения. Тем не менее глубины поврежденного слоя, полученные в подобных экспериментах, действительно совпадают с нижними пределами размеров частиц, получаемых при механическом повреждении материала. Это свидетельствует о том, что повреждения могут вызываться механически вплоть до указанных выше глубин. [c.209]

    Проходящей через верщину трещины и через ее боковую сторону, оказывается ненагруженной. Во всяком случае, при увеличении а, сопровождающемся разрывом основных и (или) вторичных связей, требуется энергия В Ааус- Чтобы получить точное соответствие между В Ааус и В AaGi, необходимо, чтобы полная энергия упругой деформации, накопленная в области рабочего объема, была израсходована на разъединение связей, пересекающих площадь В Аа. Для твердых полимеров наименьшим возможным шагом был бы разрыв одной связи, т. е. щаг шириной Аа = 0,4 нм. Активационный объем разрыва связи имеет порядок = 0,008 нм Подобный элемент объема составляет лишь 0,125/п части объема яАа , и его энергия равна 0,015GiAa2. Поэтому следует заметить, что в молекулярном масштабе, даже в отсутствие пластической деформации, для распространения разрушения требуется высвобождение энергии в объеме, который по крайней мере в 60 раз больше активационного объема разрыва основных связей, пересекающих вновь образованную поверхность площадью В Аа. [c.337]

    Физико-химические воздействия жидких сред могут повлиять на начало роста, распространение или разрыв трещины серебра в термопластичном полимере. По-видимому, жидкость должна диффундировать в полимер, чтобы повлиять на начало роста трещины серебра. Нарисава [119] определил критические напряжения ст, образования таких трещин в тонких пленках ПС и ПК, находящихся в контакте с различными спиртами и углеводородами. Он наблюдал, что трещины серебра появляются без существенной задержки по времени и что о,- уменьшается с уменьшением длины цепи растворителя (от 45 до 20 МПа для ПС, от 70 до 50 МПа для ПК). На основании этих результатов он пришел к выводу, что слабое набухание микроскопического слоя поверхности материала является необходимым и достаточным условием, чтобы вызвать образование трещин серебра. Тот же автор получил критерий для ст в виде выражения (8.29) со значениями активационных объемов 1,0—1,3 нм , энергий активации 109—130 кДж/моль и констант скорости (1 —10)-10- С для ПС и (2—50) lO- с- для ПК- [c.386]

    Общей особенностью практически всех поверхностей разрушения стеклообразных полимеров являются остатки слоев с трещинами серебра. При низких скоростях роста обычных трещин разрыв трещин серебра, как правило, происходит в центре материала, содержащего такие трещины, при сохранении более или менее однородного слоя с каждой стороны поверхности разрушения [15, 50, 150, 194, 199]. При промежуточных и высоких скоростях роста обычных трещин в ПС прп комнатной температуре становится возможным расслоение по поверхности раздела трещины серебра — матричный материал. Бихан и др. [150] более подробно исследовали данное явление на рис. 9.25 показана их микрофотография (довольно редкого) случая обычной трещины, которая распространялась с промежуточным значением скорости, а затем остановилась в области с трещинами серебра. Микрофотография позволяет выявить расслоение сильно деформированного материала с трещинами серебра по поверхности раздела, а также чередование такого расслоения между противоположными поверхностями раздела. Регулярное [c.397]

    В более широком смысле механохимия включает все особенности разрыва цепных молекул под действием напряжения. Однако в более узком смысле говорят о механохнмических методах, если имеют в виду преднамеренную механическую деградацию (твердых) полимеров. Цель этих методов заключается в измельчении или размягчении материалов или получении больших высокореакционноспособных поверхностей для создания постоянных химических связей между различными полимерами. В табл. 9.5 указаны методы и процессы, которые могут вызвать механическую деградацию цепных молекул. Назначения данных процессов указаны по отношению к механизму деформирования. Напомним, что в механохимических методах деградирующие твердые тела подвергаются нечетко выраженному сложному виду нагружения, вызывающему деформирование, которое всегда одновременно включает вынужденную эластичность, течение материала и разрыв цепей. В табл. 9,5 перечислены самые важные механизмы деформирования для указанной цели. Сделаны ссылки на те главы и разделы данной книги, где рассмотрены соответствующие механизмы деформирования. [c.414]

    У линейных полимеров узкого молекулярно-массового распределения проявляются следующие особенности а) при изменении молекулярной массы от до ЗМк начинает существенно проявляться неньютоновское течение полимеров, т. е. их вязкость при повышении напряжения Р уменьшается б) у полимеров с более высокими значениями М наблюдается ньютоновское течение, разрыв или отрыв от поверхностей ограничения (стенок) и явление сверханомалии вязкости [18 6.1]. [c.156]

    Дж/моль, а площадь, приходящаяся на одну связь,—0,2 нм . Тогда на 1 см вновь образованной поверхности затрачено энергии на разрыв химических связей суммарно около 1,5-10 Дж. Это примерно в 100 раз меньше экспериментально найденного значения для полиметилметакрилата (5-10 Дж). Р азличие объясняется тем, что даже при разрушении хрупких полимеров относительно велика доля энергии, затрачиваемой на перемещение структурных элементов, т. е. на деформирование полимера растущей трещиной в процессе разрушения. [c.197]

    Одним ИЗ сравнительно новых способов обработки поверхности является механохимический [64]. Он основан на образовании свободных радикалов, возникающих при механической обработке поверхности в среде клея. При механической обработке поверхности полимера происходит разрыв макромолекул, что приводит к образованию микрорадикалов, время жизни которых составляет 10- —10- с. Образование радикалов, генерируемых в среде клея, предохраняет их от контакта с воздухом и друг с другом. По-видимому, в этом случае увеличение прочности соединений, склеенных эпоксидными клеями, происходит за счет радикальных процессов в зоне контакта и образования химических связей между макромолекулами субстрата и клея, В качестве подтверждения этого механизма в [78] приводятся данные о стабильности свойств соединений, подвергнутых такой обработке в условиях длительного хранения. [c.126]

    Исходя из представлений о пачечной структуре полимеров и о разнообразии высших морфологических структур, можно также предположить, что механокрекинг первоначально направлен по проходным цепям, соединяющим пачки, сферолиты или иные надмолекулярные структуры, а затем по мере их распада лри диспергировании — в соответствии с общими закономерностями. Дальнейшее уточнение этих представлений возможно после накопления экопериментальных данных о поведении надмолекулярных структур в процессе диспергирования. В настоящее время известно лишь, что разрушение застеклованных полимеров происходит яе только по границам надмолекулярных образований, но и непосредственно по элементам этих структур [180]. Ряд. работ последних лет [41—43, 77, 1 81 —189] позволил уяснить многие вопросы разрушения полимеров, например несоизмеримо большие затраты энергии на деформацию полимеров, предшествующую разрушению, чем собственно на раарушение и образование новой поверхности, некую корреляцию между плотностью упаковки — числом цепей, проходящих через единицу площади сечения, и прочностью, большую долю разрыва химических связей при большей ориентации, представление о том, что 00бщ = аг +ав, т. е. полное напряжение есть сумма энергетического и энтропийного эффектов, причем первым уменьшается во времени после нагружения, а второй возрастает и т. д. Показано также, что в зависимости от природы полимера разрыв может происходить преимущественно по проходным цепям (капрон) или по межмолекулярным связям (лав сан). Все это может быть учтено при обсуждении результатов в дальнейшем, но не может подробно рассматриваться в данном случае, К тому же следует заметить, что большинство данных относится к одноосной деформации — проблеме прочности, а статистический характер разрушения при механодиспергировании накладывает существенную специфику. [c.56]

    ЛОКОН, мало изучен. Недавно Пройссом замечено, что хрупкий разрыв кристаллического полиэтилена сопровождается процессом оплавления поверхностей разрушения. В связи с этим автор предполагает, что при хрупком разрушении полимеров возникают местные перегревы до 300 "С, приводяш,ие к изменению характера надмолекулярной структуры. Однако, вероятнее всего, здесь под действием больших концентраций напряжения протекают процессы химического течения, а не плавления. [c.102]

    Итак, быстрый разрыв происходит без образования надрывов, в результате прорастания треш,ин разрушения, медленный—путем образования и прорастания надрывов . В первом случае поверхность разрыва гладкая, во втором—шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающие шероховатую зону поверхности разрушения, на второй— дефекты в виде трещин, дающие гладкую зону. В соответствии с этим разрушение резин происходит вследствие роста дефектов двух видов надрывов и трещин . Механизм разрушения ири прорастании трещин в резине аналогичен таковому ири разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. Образование сильноориентированных тяжей на первой стадии разрушения связано с преодолением межмолекулярных связей. Поэтому молекулярный механизм медленного разрыва высокоэластичных полимеров состоит из элементарных актов, включающих преодоление межмолекулярного взаимодействия при образовании тяжей и разрыв химических связей. [c.111]

    У резины из СКС-30 с повышением температуры площадь шероховатой зоны уменьшается, но средняя скорость V ее образования возрастает. Этот странный факт объясняется тем, что хотя с повышением температуры и увеличивается скорость образования и роста надрывов, но в силу особенностей этого полимера увеличение скорости роста трещин опережает увеличение скорости роста надрывов. В результате вторая стадия разрыва при высоких температурах начинается раньше, чем при низких, и зеркальная зона поверхности разрыва увеличивается, вытесняя щероховатую. Следовательно, при одном и том же напряжении при низкой температуре наблюдается медленный, а при высокой—быстрый высокоэластический)) разрыв. [c.116]

    Механизм разрушения, соответствующий медленной стадии, специфичен только для полимеров, находящихся в высокоэла-стичеоком состоянии. При разрыве полимера в высокоэластическом состоянии в вершине надрыва образуется волокнистая структура. Разрыв отдельных тяжей происходит в различных местах по направлению деформирующей силы. В результате этого на поверхности разрыва образуются бугорки н впадины, и поверх- [c.102]

    Исследования Бики и Уайтом [45] роста трещин в полимерах были основаны на изучении процесса разрушения образцов методом скоростной киносъемки. Типичные результаты, полученные для силиконового каучука, показаны на рис. 12.24. Видно, что разрыв начинается либо на поверхности, либо внутри образца. Однако при исследовании микроструктуры образцов под микроскопом заметных дефектов структуры найдено не было. [c.339]

    Структурный механизм разрушения полимерных стекол при действии статических и динамических нагрузок описан в [3, 4, 25— 27]. При определенных условиях (достаточно высокие температуры и малые напряжения) твердые полимеры в процессе разрушения обнаруживают холодное течение с последующим хрупким разрывом. При воздействии относительно больших для данной температуры напряжений наблюдается классический хрупкий разрыв с медленной термической и быстрой атермической стадиями. Он сводится к преимущественному росту одной или нескольких раз-рушающих трещин. При этом образуются зеркальная (первая стадия) и шероховатая (вторая стадия) зоны на поверхности разрыва образца. С повышением температуры размер зеркальной зоны увеличивается, а шероховатой — уменьшается. При низких температурах и достаточно больших напряжениях шероховатая зона имеет гиперболические линии скола. По фрактограммам поверхности скола можно судить о кинетике роста разрушающих трещин. [c.118]

    Молекулярная модель микротрещины (рис. 6.1) является обобщением известных моделей трещин Гриффита и Ребиндера. На границе перехода от области сплошности к свободной поверхности (штриховая линия) происходит разрыв связей между атомами (у полимеров рвутся связи С—С или другие химические связи). В момент, зафиксированный на рис. 6.1, атомы 1—5 находятся еще в объеме тела, а 6—10 и далее — на свободных поверхностях следовательно, следующий акт разрыва связи сведется в основнам к переходу 5—6. [c.149]

    Механизм разрушения, обозначенный в табл. 7.1 как вязколокальный, характеризуется протеканием процесса деформационного макрорасслоения материала на тяжи, подобного микрорасслоению полимера в трещинах серебра , причем этот процесс отчетливо выражен (рис. 7.14). По мере углубления зоны разрушения образуются и один за другим рвутся тяжи. Разрыв отдельных тяжей происходит в случайных местах, поэтому после сокращения концов тяжей на поверхностях разрушения возникают бугорки и впадины, образующие в совокупности шероховатую поверхность. Образование тяжей связано с преодолением [c.222]


Смотреть страницы где упоминается термин Поверхность разрыва полимеров: [c.327]    [c.29]    [c.234]    [c.241]    [c.101]    [c.260]    [c.93]    [c.155]    [c.350]    [c.67]    [c.292]    [c.21]    [c.65]    [c.350]   
Прочность и разрушение высокоэластических материалов (1964) -- [ c.29 , c.93 , c.94 , c.96 , c.103 , c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность разрыва



© 2025 chem21.info Реклама на сайте