Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновское излучение непрерывное

Рис. 25. Белый (непрерывный) п характеристический (К и /(р-линии) спектры рентгеновского излучения Рис. 25. Белый (непрерывный) п характеристический (К и /(р-линии) <a href="/info/2755">спектры рентгеновского</a> излучения

    Связь структурного фактора с электронными свойствами металлов. Одним из физических свойств металлов, непосредственно связанных с ближним порядком и энергией взаимодействия частиц, является электропроводность. Развитие квантовой теории твердого тела привело к выводу, что электропроводность жидких металлов можно вычислить теоретически по экспериментальным данным для структурного фактора а(5), задавая Фурье-образ потенциальной энергии взаимодействия электронов с атомами расплава. Основная идея, на которой базируются расчеты электропроводности, состоит в том, что рассеяние электронов проводимости жидкого металла описывается структурным фактором, аналогичным для рентгеновского излучения или нейтронов. Заметим, что структурный фактор рассеяния электронов проводимости ограничен значениями 5, которые для одновалентных металлов находятся слева от первого максимума а 8), а для двух (и более) валентных металлов —справа от него. В то же время, по данным рассеяния медленных нейтронов и рентгеновских лучей длиной волны X = 0,5—0,7 А, структурный фактор определяется до 5 = 15—20 А"1. Выясним, чем же обусловлено такое различие а(5). По современным представлениям, электроны проводимости металла нельзя рассматривать как свободные. Их движение в кристалле модулировано периодическим силовым полем решетки. Непрерывный энергетический спектр свободных электронов в -пространстве распадается на зоны разрешенных энергий — зоны Бриллюэна, разделенные интервалами энергий, запрещенными для электронов. На шкале энергий Е к) зоны Бриллюэна изображают графически в виде полос разрешенных значений энергии и разрывов между ними (рис. 2,13). В трехмерном/г-пространстве они имеют вид многогранников, форма которых определяется симметрией кристаллических решеток, а размеры — параметрами решетки. Для гранецентрированной кубической решетки первая зона Бриллюэна представляет собой октаэдр, а для объемно-центрированной решетки — кубический додекаэдр. [c.52]

Рис. 27. Белый (непрерывный) и характеристический (К д- и АГр-линии) спектры рентгеновского излучения Рис. 27. Белый (непрерывный) и характеристический (К д- и АГр-линии) <a href="/info/2755">спектры рентгеновского</a> излучения

    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]

    Источники первичного излучения. В рентгеновской трубке электроны ускоряются полем высокого напряжения и затем бомбардируют анод. Возникающее при этом рентгеновское излучение состоит из линий спектра материала анода и непрерывного спектра тормозного излучения с коротковолновой границей при [c.204]

Рис. 3.47. Спектр рентгеновского излучения никеля ( о = 40 кэВ), полученный с помощью спектрометра с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная краем поглощения К-излучения никеля. Рис. 3.47. <a href="/info/381131">Спектр рентгеновского излучения</a> никеля ( о = 40 кэВ), полученный с <a href="/info/1596655">помощью спектрометра</a> с дисперсией по энергии видна резкая ступенька на непрерывном фоне, обусловленная <a href="/info/135144">краем поглощения</a> К-излучения никеля.
    Края поглощения могут непосредственно наблюдаться на спектрах рентгеновского излучения. Непрерывное рентгеновское излучение, возникающее под действием бомбардировки электронами, представляет собой поток рентгеновского излучения всех энергий через образец. На краю рентгеновского излучения резкое возрастание массового коэффициента поглощения приводит к изменению интенсивности испускаемого непрерывного рентгеновского излучения. [c.87]

    Интенсивность рассеяния рентгеновского излучения в веи естве зависит от угла, под которым это рассеяние наблюдается (по отношению к направлению падающего луча). Эта зависимость в случае газов выражается непрерывной кривой без минимумов и максимумов и может быть теоретически объяснена на основании представления о независимости движения отдельных молекул газа. Твердые кристаллы рассеивают рентгеновские лучи только в определенных направлениях, что является следствием фиксированного расположения атомов в узлах кристаллической решетки и дает возможность полного анализа молекулярной структуры кристалла. [c.161]

    Торможение электронов на аноде рентгеновской трубки может происходить по-разному. одни из них тормозятся мгновенно на самой поверхности анода, что соответствует фотону максимальной величины (т. е. вычисленному по уравнению (IV. 1)1 другие, проникая в глубь анода, постепенно теряют свою энергию. Следовательно, при торможении электронов возникнут фотоны самой разнообразной энергии, а так как количество их, излучаемое в единицу времени, очень велико, то тормозной спектр будет состоять из непрерывного ряда длин волн с резкой границей в коротковолновой части. Характер распределения энергии в спектре торможения при различных напряжениях показан на рис. 56. Тормозное рентгеновское излучение называют сплошным или белым по аналогии с видимым светом. [c.107]

    Хорошими источниками наносекундных и пикосекундных световых импульсов являются газовые (например, азотный) и твердотельные (неодимовый, рубиновый) лазеры. Однако они позволяют получать лишь свет некоторых фиксированных частот. В последнее время появились перестраиваемые лазеры на растворах органических соединений, которые дают возможность непрерывно изменять длину волны генерируемого излучения. Иногда для возбуждения люминесценции используют короткие импульсы рентгеновского излучения или электронные импульсы, получаемые на ускорителях. [c.103]


    Интеграл в уравнении (5.2.15) означает, что флуоресценция вызывается первичным полихроматическим рентгеновским излучением всех длин волн в интервале К между границей непрерывного спектра и краем поглощения элемента V- Постоянная элемента учитывает различные величины, зависящие от его атомного номера. Таким образом, интенсивность пропорциональна числу фотонов, поглощенных /С-уровнем. Доля этих фотонов по отношению к числу фотонов, поглощенных всеми уровнями, составляет [c.203]

    Под рентгенографическим анализом понимается совокупность разнообразных методов-исследования, в которых используется рентгеновское излучение — поперечные электромагнитные колебания с длиной волны 10 2—Ю А. В рентгеновских трубках для получения рентгеновского излучения используют столкновение электронов, ускоренных под действием высокого напряжения с металлическим антикатодом. Возникающее при этом рентгеновское излучение в зависимости от длины волны разделяют на жесткое [Х 1 А] и мягкое [к> —5 А], в зависимости от спектрального состава — на непрерывное (сплощное), не зависящее от природы вещества антикатода, и характеристическое (линейчатое), определяемое только природой вещества антикатода а также на полихроматическое, состоящее из волн различной длины, и монохроматическое — с определенной длиной волны. При монохроматическом в основном применяют линии Ка. -серии (возникающей при переходе электронов в атомах с -оболочки на /С-оболочку) металлов от хрома (обозначается СгКа ) до молибдена (МоКа ), длины волн которых лежат в интервале от 2,3 до 0,7 А. Для монохроматизации рентгеновского излучения используются селективно поглощающие фильтры и кристаллы-монохроматоры. [c.71]

    В структурном анализе имеет существенное значение не столько изменение длины волны при рассеянии рентгеновского излучения, сколько вклад некогерентного рассеяния в суммарную интенсивность рассеяния исследуемым веществом. Некогерентное рассеяние дает непрерывный фон, интенсивность которого возрастает с углом рассеяния. При больших значениях 5 не-когерентное рассеяние от элементов с малым атомным номером может превосходить когерентное в несколько раз (рис. 2.6). Поэтому оно всегда вычитается из общего рассеяния. Обычный способ учета ние заключается в вычислении его [c.33]

    В зависимости от механизма возбуждения рентгеновское излучение называется или тормозным или характеристическим. Тормозное излучение возникает при торможении быстрых электронов на атомах исследуемого вещества и представляет собой непрерывный спектр. Характеристический спектр — линейчатый рентгеновский спектр, возникающий при переходах электронов из внещних слоев атома на близко расположенные к ядру внутренние Л -, 1-, М-, Л -электронные слои. Для его возникновения необходимо, чтобы под действием какого-либо внешнего возбуждения теми же электронами пли фотонами высокой энергии электроны внутренних слоев перешли на свободные уровни внешних слоев. При возвращении такого возбужденного атома в основное нормальное состояние испускается квант характеристического излучения согласно (111.3). На рис. 82 показана схема возникновения характеристических рентгеновских спектров. Линии в пределах каждой серии отличают друг от друга индексами, обозначаемыми буквами греческого алфавита, например Ка, Кц, а, р, V и т. д. [c.181]

    Если один из двух уровней, скажем 2 принадлежит непрерывной области энергии, соответствующей диссоциации или ионизации, то все уровни из системы Е , расположенные вблизи уровня Ей могут его возмущать. При этом некоторые уровни будут сдвигать его вверх, другие — вниз. В результате вместо уровня Ei будет слегка диффузный уровень, как это показано на рис. 102, б. Смешивание волновых функций этих двух состояний означает, что если система переводится в состояние 1, то она очень скоро приобретает свойства состояния Яг, т. е. произойдет диссоциация или ионизация. Приблизительно ситуацию можно передать словами, что происходит безызлучательный переход из дискретного состояния в непрерывное (с той же энергией), что приводит к распаду молекулы. Такие процессы носят название процессов Оже по имени исследователя, впервые открывшего это явление в рентгеновской области. Он обнаружил, что один квант рентгеновского излучения может вызвать испускание двух фотоэлектронов. При этом один из них испускается в результате обычного фотоэффекта например, с /С-оболочки), а другой — сразу же за первым вследствие такого безызлучательного перехода (поскольку Х-уровень, на который атом переходит после первой стадии, перекрывается непрерывной областью энергии, соответствующей удалению электрона с -оболочки образовавшегося иона). [c.179]

    Рентгеновское излучение генерируют в рентгеновских трубках, в к-рых ускоренные электроны тормозятся в толстой мишени из тяжелого элемента (антикатод) при этом радиац. потери значительны. Рентгеновские трубки вьшускают для получения излучений с энергиями от десятков до сотен кэВ они могут работать в непрерывном или в импульсном режиме. [c.256]

    В процессе неупругого рассеяния электронов пучка рентгеновское излучение может возникать за счет двух совершенно различных процессов 1) торможения электрона пучка в кулоновском поле атома, состоящего из ядра и слабо связанных электронов, приводящего к возникновению непрерывного спектра рентгеновского излучения с энергией от нуля до энергии падающего электрона, как показано на рис. 3.32 это излучение называется непрерывным, или тормозным рентгеновским излучением 2) взаимодействия электрона пучка с электронами внутренних оболочек, которое может привести к выбиванию связанного электрона, покидающего атом в возбужденном состоянии с вакансиями на электронной оболочке (рис. 3.33). При возвращении атомов в стационарное состояние происходит электронный переход с внешних оболочек для заполнения этой вакансии. При переходе происходит изменение энергии и высвободившаяся энергия атома может проявиться либо в форме испускания рентгеновского кванта, либо в форме испускания (оже) электрона. Так как энергия испускаемого рентгеновского кванта определяется разностью энергии между четко определенными атомными уровнями, это излучение называется характеристическим рентгеновским излучением. [c.66]

    З.5.2.2. Непрерывное рентгеновское излучение [c.68]

    На рис. 3.47 представлен спектр рентгеновского излучения никеля в диапазоне энергий О—10 кэВ. Наблюдаются также пики и N1 , а также разрыв в непрерывном спектре N1/ у края поглощения. Край поглощения, соответствующий энергии 8,331 кэВ, указан стрелкой. [c.87]

    Ионизационный или сцинтилляционный метод предусматривает использование специальных устройств-гониометров. Если при фотометоде все отраженные от образца лучи одновременно фиксируются фотопленкой, то при ионизационном методе установлен-пый на гониометре счетчик излучения непрерывно двигаясь по окружности, в центре которой установлен исследуемый образец последовательно фиксирует дифракционные максимумы, встречающиеся на пути его движения. Электрический сигнал от счетчика через специальные устройства подается па электронный самопишущий потенциометр. Отклонение пера потенциометра прямо пропорциопальпо мощности рентгеновского излучения, отраженного от образца. [c.117]

    Поскольку фотоэффект имеет место при поглощении рентгеновского излучения, после поглощения рентгеновского кванта атом остается в возбужденном ионизированном состоянии. Далее атом переходит из возбужденного в стационарное состояние по такому же механизму релаксации, который обсуждался при рассмотрении ионизации под действием электронной бомбардировки. Таким образом, в результате поглощения рентгеновского излучения может возникать характеристическое рентгеновское излучение. Это явление называется флуоресценцией, возникающей под действием рентгеновского излучения, или вторичным излучением, в отличие от первичного, обусловленного непосредственной электронной ионизацией. Так как вторичное излучение может возникать как за счет характеристического, так и непрерывного рентгеновского излучений, то следует различать оба этих явления. [c.89]

    Непрерывный спектр излучения содержит рентгеновское излучение всех энергий вплоть до энергии падающего пучка. Так как наиболее эффективная генерация флуоресцентного излучения происходит за счет рентгеновского излучения с энергией чуть выше края поглощения, то всегда будет иметь место флуоресценция за счет непрерывного излучения. Расчет интенсивности этой флуоресценции включает рассмотрение вклада части спектра непрерывного излучения, начиная от энергии поглощения кр до энергии пучка о- Б работе [64] подробно обсуждались само это явление и расчет. [c.90]

    Отношение возникающей под действием непрерывного спектра флуоресценции к полному сигналу рентгеновского излучения, возбуждаемого электронами и непрерывным спектром, обозначается 5. На рис. 3.48 представлены собранные в работе [65] экспериментальные данные по 5 (сплошные линии) для края К- и -серий в зависимости от атомного номера и расчетные [66] (пунктирные линии). Вклад флуоресценции от непре- [c.90]

    Электронный пучок, определяемый параметрами й, з и а, входит в камеру объекта и попадает на определенное место образца. Внутри области взаимодействия происходит как упругое, так и неупругое рассеяние, как описывалось в гл. 3, в результате чего в детекторах возникают сигналы за счет упругих, вторичных и поглош енных электронов, характеристического и непрерывного рентгеновского излучения, катодолюминесцентного излучения. Измеряя величину этих сигналов с помощью соответствующих детекторов, можно определить в месте падения электронного пучка некоторые свойства объектов, например локальную топографию, состав и т. д. Чтобы исследовать объект не только в одной точке, пучок нужно перемещать от одной точки к другой с помощью системы сканирования, как показано на рис. 4.1. Сканирование обычно осуществляется с помощью электромагнитных отклоняющих катушек, объединенных в две пары, каждая из которых служит для отклонения соответствен- [c.99]

    Если исследуемый кристалл, помещенный на пути монохроматического (Я= onst) рентгеновского луча, поворачивать вокруг перпендикулярной к лучу оси и, таким образом, ставить поочередно систему плоскостей кристалла в отражающее положение, то наблюдается полная картина рассеяния. Дифракционную картину можно получить и без вращения образца, используя источник с непрерывным спектром рентгеновского излучения. В этом случае для всех систем плоскостей кристалла в непрерывном спектре обязательно найдется длина волны Я, удовлетворяющая закону Вульфа — Брегга. [c.116]

    В методе Лауэ используется неподвижный монокристалл и непрерывный (сплошной) спектр рентгеновского излучения, т. е. варьируется длина волны X. Монокристалл К (см. рис. V.1) работает как спектральный прибор из всего непрерывного спектра рентгеновского излучения Я < Ящах выбираются только те длины волны, для которых при заданной ориентации монокристалла, т. 0. при фиксированных выполняется условие Вульфа — Брегга. [c.113]

    Дж. Бернал и Р. Фаулер, приняв эффективный радиус молекулы Н2О равным 1,4 A, рассчитали кривые интенсивности рассеяния рентгеновского излучения для трех типов распределения молекул плотнейшей упаковки, структуры кварца и льда-тридимита. Сопоставляя рас-счетные кривые с экспериментальной кривой интенсивности, они пришли к выводу, что в воде существуют три различные координации молекул вода I с тетраэдрической структурой типа льда-тридимита (ниже 4°С) вода II, обладающая кварцеподобной структурой (выше 4°С), и вода III с плотно упакованным размещением молекул (преобладающая при высокой температуре). С изменением температуры эти формы непрерывно переходят друг в друга. [c.228]

    Диапазон энергий квантов С.и.-от долей эВ до сотен кэВ (т. е. включает область мягкого рентгеновского излучения). С. и. характеризуется непрерывным спектром, высокой степенью поляризации, большой интенсивностью (превосходит на неск. порядков излучение в рентгеновских трубках), чрезвычайно малой расходимостью, малой длительностью импульсов (до 100 пс). Эти св-ва позволяют использовать С. и. в спектроскопии, рентгеновском структурном анализе, для изучения оптич. активности молекул, возбуждения люминесценции, инициирования фотохим. р-ций и др. Так, благодаря большой интенсивности источников С. и. удалось зарегистрировать мол. спектры поглощения с разрешением 0,003 нм. Разрабатываются импульсные методы спектроскопии, использующие С. и. для исследования метастабильных продуктов фотолиза, механизма сверхбыстрых р-ций и т. п. Рентгеновский структурный анализ биол. объектов, в частности монокристаллов белков, использующий С. и., позволяет значительно сократить время регистрации рентгенограмм, уменьшить радиац. нагрузки на образец. С. и. применяют также, напр., для фотолитографии, в произ-ве интегральных схем. [c.357]

    Универсальность растрового электронного микроскопа при исследовании твердых тел в большей мере вытекает из обширного множества взаимодействий, которые претерпевают электроны иучка внутри образца. Взаимодействия можно в основном разделить на два класса 1) упругие процессы, которые воздействуют на траектории электронов пучка внутри образца без существенного изменения их энергии 2) неупругие процессы, при которых происходит передача энергии твердому телу, приводящая к рождению вторичных электронов, оже-электро-нов, характеристического и непрерывного рентгеновского излучений, длинноволнового электромагнитного излучения в видимой, ультрафиолетовой и инфракрасной областях спектра, электронно-дырочных пар, колебаний решетки (фононы) и электронных колебаний (плазмоны). В принципе все эти взаимодействия могут быть использованы для получения информации о природе объекта — формы, состава, кристаллической структуры, электронной структуры, внутренних электрическом или магнитном полях и т. д..  [c.21]

Рис. 3.32. Схема возиикиовеиня непрерывного рентгеновского излучения за счет торможения элевдронов пучка в кулоновском поле атомов. Рис. 3.32. Схема возиикиовеиня непрерывного рентгеновского излучения за <a href="/info/1745272">счет торможения</a> элевдронов пучка в <a href="/info/570753">кулоновском поле</a> атомов.
    Генерируемый образцом спектр электромагнитного излучения, получаемый расчетом по методу Монте-Карло, показан на рис. 3.34. Непрерывное излучение простирается от виртуальной нулевой энергии (ультрафиолет и видимый свет с энергией в несколько электронвольт) до рентгеновского излучения с энергией, равной энергии падающих электронов. Максимальная энергия соответствует тем электронам пучка, которые потеряли всю свою начальную энергию за одно торможение. Так как длина волны рентгеновского излучения обратно пропорциональна энергии, то рентгеновскому излучению с максимальной энергией будет соответствовать минимальная длина волны Ямин, которая называется коротковолновым пределом Дуана—Ханта, который связан с Ео уравнением (3.26). [c.68]

    Химический анализ в растровом электронном микроскопе и peнтгeнoв кOiM микроанализаторе осуществляется иутем измерения энергии и интенсивности рентгеновского излучения, генерируемого ири бомбардировке образца сфокусированным электронным пучком. Вопросы генерирования рентгеновского излучения обсуждались в гл. 3, посвященной взаимодействию электронного иучка с образцом, где рассматривались механизмы образования характеристического и непрерывного рентгеновского излучения. В данной главе обсуждаются методы регистрации и измерения рентгеновского излучения, а также преобразования их в форму, пригодную для проведения качественного и количественного анализа. [c.190]


Смотреть страницы где упоминается термин Рентгеновское излучение непрерывное: [c.203]    [c.7]    [c.228]    [c.528]    [c.444]    [c.26]    [c.58]    [c.80]    [c.80]    [c.190]    [c.205]    [c.220]    [c.223]    [c.232]    [c.240]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Рентгеновское излучение



© 2025 chem21.info Реклама на сайте