Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность массопередачи в абсорберах

    Поверхность массопередачи и высота абсорбера [c.200]

Рис. 11.30. К расчету поверхности массопередачи противоточного абсорбера Рис. 11.30. К <a href="/info/803439">расчету поверхности</a> <a href="/info/12599">массопередачи</a> противоточного абсорбера

    Высота абсорберов. Следует отметить, что обычно поверхность контакта в колонных аппаратах трудноопределима. При непрерывном контакте фаз (пленочные и насадочные абсорберы) высоту Н абсорбера находят с помощью уравнения массопередачи, выраженного через объемный или поверхностный коэффициенты массопередачи. С учетом величины поверхности смоченной насадки (см. разд. 16.5.2), которую приравнивают к поверхности массопередачи, [c.83]

    ОПРЕДЕЛЕНИЕ ПОВЕРХНОСТИ МАССОПЕРЕДАЧИ И ВЫСОТЫ АБСОРБЕРОВ [c.107]

    Применение ступенчатого противотока в абсорбере Вентури (при сохранении прямотока газа и жидкости в одной ступени) возможно при эжекции жидкости (рис. 11.14, б). Здесь газ, проходя в каждой секции по узкой щели мел поверхностью жидкости и нижним обрезом конфузора 1, увлекает за собой жидкостную пленку. Последняя, как и в предьщущем случае, в горловине 2 дробится газовым потоком на мелкие капли, создавая развитую поверхность массопередачи. Организация противотока жидкой и газовой фаз между секциями (ступенями) дает возможность увеличить массообменную способность в сравнении с прямотоком за счет повышения движущей силы процесса. [c.921]

    Поверхность массопередачи, в абсорбере по уравнению (VI. 1) равна  [c.107]

    Насадочные абсорберы [1—71 представляют собой колонны, загруженные насадкой из тел различной формы (кольца, кусковой материал, деревянные решетки и т. д.). Соприкосновение газа с жидкостью происходит в основном на смоченной поверхности насадки, по которой стекает орошающая жидкость. Поверхность насадки в единице объема аппарата может быть довольно большой и поэтому в сравнительно небольших объемах можно создать значительные поверхности массопередачи. Однако в ряде случаев активная поверхность контакта меньше геометрической поверхности (стр. 437). [c.377]

    Брызгоунос. Как отмечалось в главе И, при определенных скоростях газ начинает увлекать с собой капли жидкости, которые образуются при разрыве пузырьков, выходящих на поверхность барботажного слоя при этом капли попадают с потоком газа на вышерасположенную тарелку. Унос жидкости газовым потоком приводит к снижению движущей силы процесса массопередачи, увеличению жидкостной нагрузки сливных устройств, потере абсорбента с уходящим из абсорбера газом и является одной h i основных причин, ограничивающих возможность интенсификации тарельчатых аппаратов. [c.464]

    Высота абсорберов. При расчете высоты тарельчатой части абсорбера (т. е. расстояния между верхней и нижней тарелками) по уравнению массопередачи коэффициенты массопередачи определяют по уравнению аддитивности фазовых сопротивлений (см. гл. 15). Следует отметить, что эти коэффициенты и отнесены к поверхности массопередачи, которую в тарельчатых колоннах можно достаточно приближенно определить, как правило, для первого гидродинамического режима - барботажного при скоростях газа, не превышающих скорость свободного всплывания пузырьков. [c.90]


    Расчет поверхности массопередачи и высоты абсорбера [c.216]

    Рассчитав необходимую поверхность массопередачи F насадочных абсорберов, находят высоту слоя насадки  [c.933]

    С целью расчета необходимой поверхности массопередачи Р противоточного абсорбера (рис. 11.30) для рассматриваемого общего случая составим материальный баланс по поглощаемому компоненту для элементарного контура К для газовой фазы за единицу времени, учитывая, что переменными здесь являются как у, так и 0  [c.957]

    ТОВ, В которых поверхность массопередачи не зависит от скорости газа (насадочные абсорберы при режимах ниже точки подвисания). В таких аппаратах, как барботажные абсорберы, поверхность массопередачи определяется скоростью газа, от которой зависит и , отнесенный к условной поверхности контакта. [c.151]

    Кинетика процессов абсорбции рассматривалась ранее в виде общей теории массообменных процессов. Для насадочных абсорберов (рис. 5.22) с непрерывным контактом фаз величины необходимой поверхности массопередачи или общее число единиц переноса для процессов абсорбции определяются по уравнениям (5.42) и (5.49) средняя по массообменной поверхности движущая сила процесса при линейной равновесной зависимости вычисляется по уравнению (5.52) коэффициент массопередачи находят через величины коэффициентов массоотдачи в газовой и в жидкой фазах, согласно формуле (5.36) и т. п. [c.393]

    Рециркуляция по жидкости целесообразна в том случае, когда основное сопротивление массопередаче составляет переход вещества от поверхности раздела фаз в жидкость. Если же основным сопротивлением процесса является переход вещества из газовой фазы к поверхности раздела фаз, то целесообразно организовать рециркуляцию по газу. Возможна также организация работы абсорбера с одновременной рециркуляцией и жидкости, и газа. [c.289]

    Смоченная поверхность насадки. В абсорберах, работающих в режимах ниже точки инверсии, насадка может не полностью смачиваться жидкостью. В этом сл чае поверхность массопередачи будет меньше поверхности насадки. Отношение удельной смоченной поверхности а м ко всей удельной поверхности насадки называется коэффициентом смачивания насадки и обозначается через г . Таким образом [c.462]

    Действительная поверхность массопередачи редко бывает известна. Например, в барботажных абсорберах она зависит от режима движения фаз, в насадочных — от степени смачивания насадки. На практике обычно пользуются коэффициентами массопередачи, отнесенными к единице объема аппарата. [c.111]

    Высота абсорбера. Рабочая высота абсорбера (высота слоя насадки) определяется на основе требуемого объема насадки который, в свою очередь, зависит для данной насадки от величины поверхности массопередачи Р. Величину поверхности Р находят по общему уравнению массопередачи (X, 46) или (X, 46а). Тогда объем насадки [c.488]

    Полый распыливающий абсорбер (рис. Х1-28) представляет собой колонну, в верхней части корпуса / которой имеются форсунки 2 для распыливания жидкости (главным образом механические). В распылива-ющих абсорберах объемные коэффициенты массопередачи быстро снижаются по мере удаления от форсунок вследствие коалесценции капель и уменьшения поверхности фазового контакта. Поэтому оросители (форсунки) в этих аппаратах обычно устанавливают на нескольких уровнях. [c.457]

    При абсорбции процесс массопередачи протекает на поверхности соприкосновения фаз. Поэтому в аппаратах для поглощения газов жидкостями (абсорберах) должна быть создана развитая поверхность соприкосновения между газом и жидкостью. [c.594]

    Аппараты, в которых осуществляются абсорбционные процессы, называют абсорберами. Как и другие процессы массопередачи, абсорбция протекает на поверхности раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы можно условно разделить на следующие группы 1) поверхностные и пленочные 2) насадочные 3) барботажные (тарельчатые) 4) распыливающие. [c.442]

    Как указывалось в главе X, при отсутствии данных о поверхности контакта фаз высота абсорбера может быть найдена другими способами, например через объемные коэффициенты массопередачи или число единиц переноса [уравнение (X,60)]. [c.459]


Смотреть страницы где упоминается термин Поверхность массопередачи в абсорберах: [c.110]    [c.206]    [c.161]    [c.267]    [c.160]    [c.20]    [c.206]    [c.110]    [c.216]    [c.448]   
Основные процессы и аппараты химической технологии (1983) -- [ c.103 , c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбер

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте