Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен теория процессов

    Наибольшее распространение в неравновесной газовой хроматографии получили теория эквивалентных теоретических тарелок А. Дж. П. Мартина и диффузионно-массообменная теория Дж. Дж. Ван-Деемтера. Последнюю часто называют теорией эффективной диффузии. Обе теории основаны на допущении, что хроматографический процесс протекает в линейной области изотермы адсорбции (в ГАХ) или изотермы распределения (в ГЖХ). Количественной мерой размывания в первом случае является высота Я теоретической тарелки, во втором — эффективный коэффициент диффузии О фф. [c.47]


    Этот прием—разбивка колонки на тарелки—представляет по существу замену реальных процессов, непрерывно протекающих в хроматографической колонке, эквивалентным по результатам периодическим процессом, также приводящим к размыванию полосы компонента, введенного на первую ступень такой эквивалентной колонки он полезен тем, что позволяет легко получите уравнение, описывающее форму размываемой полосы. Уравнение такого же вида получается и из диффузионно-массообменной теории, что, как будет показано ниже, позволяет связать обе теории и выразить высоту эквивалентной теоретической тарелки в функции скорости потока газа-носителя. [c.576]

    Несмотря на ошибочность допущения о независимости толщины пленки от коэффициента диффузии, приводящего к линейной зависимости между коэффициентом массоотдачи и коэффициентом диффузии, пленочная теория сыграла положительную роль в развитии массообменных процессов. Идеи, связанные с особой ролью тонких пленок и наличием равновесия на границе раздела фаз, а также вывод о существовании формул аддитивности фазовых сопротивлений, широко использовались в дальнейших исследованиях. [c.173]

    Вторая часть Массообменные процессы в переработке газа и газового конденсата излагает теорию процессов и аппаратов, используемых в переработке углеводородного сырья.. Это вполне традиционная часть. [c.3]

    Важную роль в технологических процессах играет, как известно, явление массопереноса, т. е. явление переноса массы вещества между двумя фазами. Существует несколько теорий процесса массопереноса через межфазную поверхность. Наибольшее распространение получила пленочно-пенетрационная теория, которая утверждает, что имеет место двойственный механизм диффузии. При малом времени контакта массообмен протекает как ряд неустановившихся процессов диффузии компонента от межфазной поверхности к элементарным вихрям сплошной фазы, соприкасающимся с поверхностью и проникающим в глубь сплошной фазы. При более длительном времени контакта действует механизм молекулярной диффузии через ламинарные пограничные пленки по обе стороны раздела фаз. [c.30]

    Фильтрование суспензий обычно заканчивается промывкой и просушкой осадков. Эти процессы характеризуются гидродинамическими, а также массообменными и диффузионными явлениями. Рассмотрение этих процессов дополняет теорию процесса фильтрования. [c.38]


    В процессе сушки изменяются технологические свойства материала. Правильно организованный процесс сушки не только не ухудшает технологические свойства, ио и дает заметное улучшение их. Например, сушка зерна при оптимальном режиме вызывает повышение всхожести и энергии прорастания зерна. Правильно высушенное зерно дает повышение урожая по сравнению с зерном, высушенным на воздухе в естественных условиях. Поэтому оптимальный режим сушки должен определяться технологическими свойствами материала и закономерностями их изменения при удалении влаги и при воздействии тепла. Технология сушки является решающим фактором при выборе метода сушки. Технологические свойства материала в самом широком пони.ма-нии этого слова (физико-химические, структурно-механические, биохимические свойства и т. д.) зависят от формы или вида связи поглощаемого вещества (влаги) с веществом сухого материала. Таким образом, теория процесса сушки влажных материалов базируется на двух научных дисциплинах тепло- и массообмене при фазовых превращениях и на учении о формах связи поглощенного вещества с веществом самого материала. [c.83]

    Однако решение общей системы уравнений, описывающей протекающий в реакторе процесс, не представляется возможным ввиду значительной сложности нелинейных дифференциальных уравнений переноса с коэффициентами (вязкость, коэффициент диффузии и т. д.), зависящими от искомого распределения температуры реакционной массы. Как и всегда при анализе сложных процессов, нужны приемлемые упрощения их описания. В теории химических реакторов принято полагать, что вместо сложного химического, теплового и диффузионного взаимодействия можно анализировать более простые предельные варианты процессов 1) скорость собственно химической реакции значительно меньше скорости подачи реагентов в аппарат и транспорта их из основной массы потока в зону непосредственного реагирования, при этом интегральная скорость всего процесса не зависит от интенсивности массообменных (диффузионных) процессов, а определяется кинетикой химической реакции (концентрацией и температурой реагентов),— это так называемая кинетическая область протекания процесса 2) скорость химической реакции велика и общий темп химического превращения определяется скоростью транспорта реагентов в зону реагирования,— диффузионная область  [c.107]

    А. В. Лыков. Тепло- и массообмен в процессах сушки. Госэнергоиздат, 1956. 8. В. И. Бабий, И. П. Иванова. Исследование движения горящей угольной пыли,— Труды Третьего Всесоюзного совещания по теории горения. Изд-во АН СССР, 11960. [c.32]

    Пенетрационная теория. Рассмотрим процесс хемосорбции в приближении пенетрационной модели. Массообмен, сопровождаемый необратимой химической реакцией второго порядка, в этом случае описьшается системой уравнений  [c.269]

    Системы жидкость — газ, жидкость — твердое, газ — твердое, газ — газ, жидкость — жидкость, твердое — твердое. Вопросам, связанным с теорией процессов в этих системах, а также проектированию массообменных аппаратов и оборудования, посвящены четыре главы. Здесь приведены справочные данные, необходимые для расчета и экономического сравнения различных конструкций колонн, фильтров, центрифуг, отстойников, смесителей и другого оборудования. Большое внимание уделено новым аппаратурным конструкциям. [c.6]

    Применение теории подобия показывает (см. главу IV), что массообменный процесс характеризуется критериями Нид = ЫО, Ргд = Ке = vLh. В течение ряда лет расчеты процессов осуществляли по уравнениям связи между критериями. Эти уравнения и сегодня используют для определения физико-химических постоянных (например, констант скоростей массопереноса), однако общий метод расчета процессов основан на использовании уравнений балансов и концепции единичного элемента процесса разделения — теоретической тарелки. [c.81]

    В результате влияния подобных факторов отдельные участки (зоны) данного вещества в колонке передвигаются с неодинаковой скоростью.. Это приводит к расширению хроматографических полос (зон) и перекрыванию пиков разделяемых веществ на хроматограммах. Процессы, в результате которых происходит размывание полос, можно объяснить при помощи теории эквивалентных тарелок, диффузионно-массообменной теории и т. д. [c.64]

    ТЕОРИЯ ПРОЦЕССОВ МАССОПЕРЕДАЧИ 1. Общие сведения о массообменных процессах [c.560]

    В третьем разделе даны основы теории и расчета массообменных аппаратов, в которых в основном происходят диффузионные процессы. Кратко изложены теория сушки, методика расчета сушильных устройств и даны примеры расчетов воздушной и газовой сушилок. Приведены основные зависимости для расчета процесса ректификации и пример расчета ректификационных колонн тарельчатого н насадочного типов. Кратко описаны закономерности процесса, методика и пример расчета абсорбционной колонны. Изложены основы расчета экстракторов для жидкостей и твердых тел. [c.4]


    В термодинамической теории массообменных процессов разделения при переходе от составов фаз в одном межтарелочном отделении к составам фаз в соседнем за количественную основу принимается гипотеза теоретической тарелки ступени). Особенность этой теории состоит в том, что она не занимается вопросом о механизме процесса и не исследует диффузионной природы и кинетической картины явления массопередачи на контактной ступени. Теория массообменных процессов разделения, основанная на концепции теоретической тарелки (ступени), изучает предельные условия проведения процесса и устанавливает эталоны, сравнением с которыми можно получить правильное суждение [c.122]

    ОСНОВЫ ТЕОРИИ МАССООБМЕННЫХ ПРОЦЕССОВ [c.49]

    Модель Хигби не учитывает явным образом конвективный массообмен и отражает больше качественную, а не количественную сторону процесса переноса в сплошной фазе. Однако идеи пенетрационной теории оказались полезными и в дальнейшем применялись в работах [228— 233] и многих других. [c.174]

    Как следует из общей теории массообменных процессов, абсорбция может осуществляться в том случае, если рабочая концентрация компонента в газовой фазе больше равновесной. Поэтому на диаграмме Х—У рабочая линия процесса абсорбции должна располагаться выше равновесной кривой (см. рис. У1-5). [c.200]

    Жидкости и газы, насыщающие нефтегазоконденсатные пласты, представляют собой смеси углеводородных, а также неуглеводородных компонентов, некоторые из которых способны растворяться в углеводородных смесях. При определенных режимах разработки нефтяных и нефтегазоконденсатных месторождений в пласте возникает многофазное течение сложной многокомпонентной смеси, при котором между движущимися с различными скоростями фазами осуществляется интенсивный массообмен. Переход отдельных компонентов из одной фазы в другую влечет за собой изменение составов и физических свойств фильтрующихся фаз. Такие процессы происходят, например, при движении газированной нефти и вытеснении ее водой или газом, при разработке месторождений сложного комйонентногс ( ава (в частности, с большим содержанием неуглеводородных компонентов), при вытеснении нефти оторочками активной примеси (полимерными, щелочными и мицеллярными растворами различными жидкими и газообразными растворителями). Основой для расчета таких процессов служит теория многофазной многокомпонентной фильтрации, интенсивно развивающаяся в последние годы. Вместе с тем заметим, что область ее применения шире, чем здесь указано, и эта теория имеет важное общенаучное значение. [c.252]

    Для получения продуктов желаемой степени чистоты с высокими выходами служит процесс ректификации. Как следует из теории массообменных процессов, при взаимодействии неравновесных паровой и жидкой фаз в результате процессов массо-и теплообмена система придет в состояние равновесия. При этом присутствующие в фазах компоненты будут перераспределяться между ними. В результате вновь образованные паровая и жидкая фазы будут отличаться по составу от вступивших в контакт паров и жидкости. Пары обогатятся НКК, а жидкость ВКК. При данном давлении для осуществления этого процесса температура вступающих в контакт паров должна быть выше, чем жидкости. После контакта температуры обеих фаз выравниваются. [c.254]

    Тепло - и массообмен в ЦПА. Имеются подробные сведения [42—47] об исследовании в различных моделях ЦПА процессов теплопередачи, абсорбции и десорбции хорошо растворимых газов и пылеулавливания приведены соответствующие расчетные формулы, полученные с применением теории подобия, на основе разработанных ранее принципов моделирования пенных аппаратов [178, 232, 307]. [c.257]

    В нашем представлении общая теория печей может быть разработана только на основе определенной схематизации тепловой работы печей, учитывающей только общие черты этой работы, т. е. в известной степени на основе абстрактного представления о работе печей. Практическое значение. общей теории печей заключается в формулировании положений для конструирования печей как существующих в настоящее время, так и могущих возникнуть в будущем в связи с появлением новых технологических процессов. Теоретическими основами общей теории печей является физика (главным образом техническая) и физическая химия. Если будет уместно физику и физическую химию сравнить с корневой системой дерева, то общая теория печей есть ствол, ветви которого можно рассматривать как частные функциональные теории печей конкретного технологического назначения. Подобно термодинамике, механике жидкостей и газов и учению о тепло- и массообмене, общая теория печей есть наука феноменологическая, рассматривающая явления как таковые, не касаясь механизма тех или иных процессов, сущность которых по-настоящему раскрывается при рассмотрении явлений на уровне микромира. Поэтому представления из области микромира привлекаются только в тех случаях, когда иначе нельзя объяснить сущность того или иного процесса. [c.11]

    Детерминированное математическое описание массообменных процессов в зоне технологического процесса все же получается крайне несовершенным, прежде всего из-за трудности достоверно сформулировать граничные условия. Общ,ая теория печей при анализе тепловой работы печей-теплогенераторов исходит из предпосылки, что в большинстве практически важных случаев процесс распределения окислителя не является лимитирующим звеном, и поэтому процесс в целом лимитируется только подачей окислителя в зону технологического процесса. Указанное допущение позволяет при [c.51]

    Впервые в 1973 г. разработана теория проектирования режима турбинного бурения по предельным параметрам турбобура, созданы конструкция и теория работы планетарно-дифференциального турбобура, гидроакустические генераторы для интенсификации различных химико-технологических тепло-массообменных процессов, гидроакустическая медицинская техника для физио-мануальной терапии. Впервые разработаны гидроакустические гомогенизаторы, форсунки для различных отраслей промышленности, в т. ч. для нефтехимии и нефтепереработки. Разработана гидроакустическая техника и технология для получения промышленного битума и технического углерода, гидроакустические сепараторы для разделения многофазных сред. Предложена технология для подземной дегазации дистилляции и термического крекинга сырой нефти с применением скважинного ядерного теплогенератора. [c.145]

    В реальных условиях массообмен, т. е. процессы адсорбции на поверхности жидкости, диффузия в толщу пленки, адсорбция на поверхности носителя и соответствующие обратные переходы в газовую фазу идут с различной скоростью. Влияние всех перечисленных выше процессов учитывается путем введения общего эффективного коэффициента диффузии. Он представляет собой сумму эффективных коэффициентов диффузии отдельных стадий и зависит от скорости потока газа. Форма хроматографической полосы в теории диффузии, как и теории тарелок, описывается кривой Гаусса. [c.139]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Выполнение курсового проекта предусматривает освоение методики (с применением ЭВМ) технологического расчста аппарата (установки), анализ вариантов конструкт1Ий, углубление теории процесса, г.е. студент, используя ранее полученные значения и привлекая дополнительные материалы, выполняет тепловые, массообменные конструктивные и гидравлитл ские расчеты аппарата (установки) и черте. ки апп. рата с узлами на. 1-2 листах формата 24. [c.278]

    Как уже указывалось, характерная особенность слоев, ожижаемых газом,—образование газовых пузырей. Интенсивность массообмена между газовыми пузырями и плотной фазой псевдоожиженного слоя существенно влияет на протекание в псевдоожиженном слое различных тепло- и массообменных, а также химических процессов, Поэтому теоретический анализ массообмена между пузырями и плотной фазой слоя является важным элементом теории процессов переноса в псевдоожиженном слое. Однако проблема теоретического описания тепло- и массообмена между пузырями и плотной фазой слоя до сих пор не имеет уде- влетворительного решения, что связано с многообразием явлений различной физической природы, влияющих на протекание этих процессов. [c.184]

    Описание конвективной диффузии некоторого компонента газа к твердой частице осложняется тем, что в общем случае отсутствует аналитическое решение задачи об обтекании твердой частицы в псевдоожиженном слое потоком газа. Тепло- и массообмен твердых частиц с потоком газа имеет существенно нестационарный характер. Решение задачи о диффузии некоторого компонента внутри твердых частиц тоже может наталкиваться на значительные трудности. Например, если рассматривается процесс адсорбции, а изотерма адсорбции нелинейна, то уравнение диффузии адсорбируемого компонента внутри твердрй частицы с учетом поглощения вещества при адсорбции нелинейно. В силу этих трудностей аналитическое решение задачи о тепло- и массообмене между твердыми частицами и омывающим их потоком газа до настоящего времени отсутствует. Исследование тепло- и массообмена между газом и твердыми частицами представляет собой одно из направлений дальнейшего развития теории процессов переноса в псевдоожиженном слое. [c.254]


Библиография для Массообмен теория процессов: [c.33]    [c.56]    [c.40]    [c.246]    [c.20]    [c.174]    [c.325]   
Смотреть страницы где упоминается термин Массообмен теория процессов: [c.520]    [c.214]    [c.348]    [c.169]    [c.200]    [c.88]    [c.490]    [c.304]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.560 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.560 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Теория массообмена



© 2025 chem21.info Реклама на сайте