Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость вязкости монослоя от поверхностного давления

    Одной из характерных особенностей таких полипептидных монослоев является их высокий поверхностный момент, значительно превосходящий поверхностный момент полипептидов с неполярными боковыми цепями, например поли-В, Ь-аланина. Полярные связи в боковых цепях влияют на поверхностный момент так же, как и связи, расположенные в главной цепи. Важно подчеркнуть, что поверхностная вязкость поли-Р-бензпл-Ь-аспартата проявляется только при высоких поверхностных давлениях. Вообще поверхностная вязкость мопослоев в конденсированном состоянии оказывается высокой даже при тех площадях, при которых поверхностное давление все еще остается достаточно низким напротив, для монослоя, находящегося в растянутом состоянии, поверхностная вязкость обнаруживается лишь при площадях, при которых поверхностное давление становится достаточно высоким. Другими словами, поверхностная вязкость конденсированной пленки действительно связана с самим монослоем, тогда как поверхностная вязкость растянутой пленки, вероятно, характеризует сильно сжатый монослой. Такое характерное различие в вязкостных св011ствах конденсированных и растянутых пленок наблюдается не только у сополимерных полипептидов, о которых говорилось выше, но и у всех других полимеров. Хотя поверхностная вязкость поли-Р-бензил-Ь-аспартата дает картину, характерную для пленок растянутого типа, кривая зависимости давление — площадь соответствует пленке конденсированного типа. Более того, поверхностная вязкость плепок этого полипептида характеризуется положительным температурным коэффициентом, что отличает их от других пленок растянутого типа, которые имеют обычно отрицательный температурный коэффициент. Различия между пленками ноли-у-бензил-Ь-глутамата и поли-Р-бензил-Ь-аспартата и особенно аномальные свойства последнего обусловлены расположением полярных групп в боковых цепях. Карбонильные группы боковых цепей могут располагаться вне водной поверхности, однако в случае поли- -бензил-Ь-аспартата они соприкасаются с водной поверхностью и вряд ли отличаются от карбонильных групп главной цепи. В соответствии с этим возможность образования водородных связей между карбонильной группой боковой цепи и аминогруппой главной цепи делает конфигурацию этого полимера менее устойчивой. Это может быть причиной [c.306]


    Как уже упоминалось (см. стр. 277), молекулярный вес пленкообразующего вещества может быть определен из кривых зависимости пА — л. Если этим методом определить молекулярный вес поливинилацетата, образующего монослой растянутого типа, то полученная величина может оказаться гораздо меньше истинного молекулярного веса полимера, так как эффективной кинетической единицей в этом случае является не молекула, а меньший по величине сегмент. С другой стороны, хорошо известно, что вязкость растворов полимеров зависит от молекулярного веса. В соответствии с этим Исемура и Фукудзука [58] изучали зависимость поверхностной вязкости от молекулярного веса М пленкообразующего полимера и показали, что связь между ними для такого полимера, как поливинилацетат, при относительно высоких поверхностных давлениях может быть описана следующим уравнением  [c.307]

    Далее, эти опыты обнаружили существенно новую зависимость двухмерной вязкости от длины цепи в гомологическом ряду. Так, Гаркинсом было найдено, что вязкость в области двухмерных давлений, соответствующих твердому конденсированному состоянию, падает с удлинением цепи в гомологическом ряду, т. е. что монослой октадецилового спирта обладает меньшей вязкостью, чем монослой тетрадецилового спирта. Этот факт Мур и Эйринг [4] объясняли более тесным переплетением более коротких цепей. Однако, согласно высказанному предположению [1], этот результат может быть следствием измерения вязкости моноолоев различных гомологов при несоответственных состояниях, а именно, что при одинаковых температурах измерения (20—25°) С -спирт находится значительно дальше от своей точки плавления (58°), чем Рдин1см С14-спирт (36°), и поэтому структуры монослоев различных гомологов могут быть не вполне одинаковы. Вероятно, что при. более высоких температурах структура монослоев приближается к структуре объемных кристаллов этих же спиртов, возникающей при температурах, близких к точке плавления. Это представление подтверждается кривыми температурной зависимости вязкости (рис. 3). Вязкость монослоя октадецилового спйрта (С в) достигает такой же величины (даже большей), как и вязкость монослоев низших гомологов — тетрадецилового (С14) и цетиловОго (С ) спиртов (вязкость последнего при повышении температуры также соответственно повышается), но при соответственно более высокой температуре, близкой к своей точке плавления. При приближении к температуре плавления объемного кристалла поверхностная вязкость уже перестает возра- [c.56]

    Метод измерения поверхностной вязкости позволяет выяснить состояние эхих двух участков кривой давления. Метод, примененный нами еще в 1936 году, основан на колебании диска, подвешенного на упругой проволоке, в монослое. Почти одновремезЕшо этот метод был использован также и Гаркинсом [2] для выяснения структуры монослоев спиртов и кислот. Результаты Гаркинса, во многом совпадающие с нашими данными, содержат в то й е время и ряд выводов, не подтверждающахся нашими последними данными. В частности, для нижнего участка кривой давление — площадь Р = /(а) Гаркинс получил линейную зависимость логарифма вязкости монослоя от двухмерного давления в точке излома кривой = /(а) по данным Гаркинса происходит во всех случаях (для всех спиртов и кислот) резкое возрастание поверхностной вязкости. [c.54]



Смотреть главы в:

Практикум по химии поверхностных явлений и адсорбции -> Зависимость вязкости монослоя от поверхностного давления




ПОИСК





Смотрите так же термины и статьи:

Вязкость зависимость

Вязкость поверхностная

Давление поверхностное



© 2025 chem21.info Реклама на сайте