Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод молекулярного веса белков

    Структура рибонуклеазы. После того как Сэнгер разработал методы определения последовательности расположения аминокислот в белковой молекуле, другие исследователи также приступили к изучению более крупных молекул белка. Мур и Штейн и их сотрудники в 1960 году определили строение фермента рибонуклеазы. Этот белок с молекулярным весом 13 700 содержит 124 аминокислотных остатка в одной цепочке. Свернутая кольцом цепочка соединена в четырех местах дисульфидными группами цистина так, как эт показано на рис. 218. Последовательность аминокислот была определена и для некоторых полипептидов, обладающих свойствами гормонов был изучен также белок вируса табачной мозаики, содержащий 158 аминокислотных остатков. [c.319]


    Сальмин, простой белок, не содержащий цистеина и ароматических аминокислот, не изменяет своего молекулярного веса при облучении, что установлено седиментационным анализом в ультрацентрифуге и методом светорассеяния [71]. [c.228]

    Осмотический метод. Применение осмотического метода наталкивается на ту трудность, что белки, будучи амфотерными ионами, существуют в кислом растворе в виде катионов, а в щелочном растворе —в виде анионов. В кислом растворе присутствуют также неорганические анионы (например, С1 ), а в щелочном растворе — катионы (например, Na+). Эти ионы с небольшим молекулярным весом могут диффундировать через мембраны, не проницаемые для макроионов белка, увеличивая осмотическое давление по ту сторону мембраны, где находится белок (эффект Доннана), Вследствие этого осмотическое давление изменяется с изменением pH, так как число кислотных или основных групп белка тоже зависит от pH например, для 1,2%-ного раствора гемоглобина имеем [c.428]

    ГПХ можно использовать для определения молекулярной массы и размеров белковых молекул. По методу Эндрюса [4—6] вначале на основании предварительного анализа нескольких белков с известной молекулярной массой строят калибровочную кривую, выражающую графическую зависимость удерживаемого объема Уе от молекулярной массы М. После этого молекулярную массу и стоксов радиус исследуемого белка определяют путем интерполяции. В отличие от других методов определения молекулярного веса здесь можно работать с мало-очищенными препаратами. Если исследуемый белок обладает какими-либо характерными свойствами, например ферментативной активностью или поглощением при определенной длине волны, его содержание в анализируемом препарате может быть минимальным. [c.425]

    Осторожное выделение белков из живых организмов позволило узнать очень многое о их свойствах. Каждый белок имеет вполне определенный молекулярный вес (от 10000 до нескольких миллионов), а отдельные группы белков можно выделить и исследовать благодаря тому, что каждый из них обладает различной скоростью диффузии. Например, определение молекулярного веса белка осуществляется методом измерения осмотического давления. Многие белки удается получить в кристаллической форме, а это позволяет исследовать их строение методом дифракции рентгеновских лучей. [c.482]

    Однако / нс-форма не имеет, по-видимому, широкого распространения в белках вследствие стерических (пространственных) препятствий. Число и последовательность аминокислот, соединенных друг с другом пептидными связями, характеризуют первичную структуру белка. Молекулярные веса белковых молекул колеблются от 6000 для инсулина до более миллиона. Инсулин представляет собой белок с крайне низким молекулярным весом однако его молекула содержит 51 аминокислотный остаток. Белок с молекулярным весом 100 ООО содержит приблизительно 900 аминокислотных остатков. Выяснение первичной структуры белка представляет, таким образом, очень трудную задачу. Но это не испугало Сенгера, который в конце второй мировой войны начал серию исследований, успешно завершившихся в 1954 г. полной расшифровкой первичной структуры инсулина. Успех Сенгера и его сотрудников был обусловлен тем, что сам Сенгер разработал метод анализа концевых амин-ных групп, а Мартин и Синг — методы выделения веществ с помощью распределительной хроматографии на бумаге. [c.27]


    Зная, нанример, что гемоглобин (белок, переносящий кислород) содержит 0,335 г железа на 100 г белка, мы можем определить его минимальный молекулярный вес он будет равен (55,85/0,335) х 100 == 16 700. С помощью физических методов (см. ниже) было показано, что истинный молекулярный вес гемоглобина близок к 66 ООО. Следовательно, каждая молекула гемоглобина должна содержать четыре атома железа. В аналогичных расчетах с использованием данных по аминокислотному составу выбирают, естественно, ту аминокислоту, содержание которой в белке минимально. Этот метод используется главным образом для проверки результатов определений молекулярного веса с помощью физических методов. [c.61]

    Наконец, по возрастанию поглощения света в области 295 ммк, сопутствующему ионизации фенольных групп, было определено число остатков тирозина, которое оказалось равным 6, При pH 7,5 происходит изменение конформации макромолекулы, и две карбоксильные группы, скрытые до того внутри глобулы, становятся обратимо титруемыми. Всего в р-лактоглобулине найдено 53 карбоксильные группы. Таким образом, методом титрования могут быть изучены некоторые структурные особенности и переходы в белке. При рН>9,7 белок необратимо денатурирует. При низких значениях pH он диссоциирует на две субъединицы с молекулярным весом около 18 000 каждая. Результаты титрования согласуются с данными аминокислотного анализа белка, проведенного с помощью стандартных методов, с точностью до одного аминокислотного остатка. [c.115]

    Полиамиды давно привлекли внимание химиков вследствие того, что белки являются полиамидами а-ами-нокислот. Имеется примерно 22—26 природных а-амино-кислот, из различных комбинаций которых построены белки, встречающиеся в природе. Задача синтеза молекулы белка все еще не решена большое значение для ее (пока безуспешного) решения имели работы Эмиля Фишера, который при помощи ряда ступенчатых реакций получил полипептид, состоящий из 18 аминокислотных звеньев. Молекулярный вес этого вещества, однако, был гораздо меньше молекулярного веса, присущего природны.м белкам. Впрочем, нельзя предполагать, что лабораторными методами путем проведения процесса поликонденсации можно получить такой в высшей степени упорядоченный полимер, как природный белок. [c.36]

    В отличие от веществ с малым молекулярным весом, белки проникают через полупроницаемые мембраны из коллодия, целлофана и других веществ очень медленно. Если раствор, содержащий белок и какое-либо низкомолекулярное соединение, например хлористый натрий, поместить в мешочке из коллодия или целлофана в воду, то ионы хлора и натрия будут покидать мешочек значительно быстрее, чем молекулы белка. Меняя воду, окружающую мешочек, или опустив мешочек в проточную воду, можно освободить раствор белка от соли. Этот метод носит название диализа. [c.58]

    Кон определил молекулярный вес единицы ферментного белка, содержаш его 1 активный центр, с помощью метода равновесного диализа ингибиторов ферментативного катализа, т. е. измерения количества белка, связывающего 1 моль ингибитора. Найденная им цифра молекулярного веса — 135 ООО. На самом же деле очищенный белок представляет собой гексамер этой элементарной единицы, т. е. имеет молекулярный вес 810 ООО. [c.486]

    Осмометрические определения молекулярных весов соединений, имеющих молекулярный вес ниже 150 000, более точны, чем определения при помощи других методов, так как их результаты менее зависят от формы и гидратации белковых молекул. Осмометрические определения, однако, не дают возможности судить, является ли белок в испытуемом растворе гомогенным или же он представляет собой смесь белков различных молекулярных весов. Если раствор содержит более одного вида белка, то молекулярный вес, рассчитанный из осмотического давления, является средней величиной, равной сумме молекулярных весов всех белковых молекул, разделенной на общее число молекул белка. [c.51]

    В растворе, содержащем смесь нескольких белков, возникает не одна, а несколько границ. Таким образом, этот метод позволяет обнаружить, однороден или нет тот или иной белок. Так было найдено, что желатина гетерогенна и состоит из частиц с молекулярным весом в пределах 10 000—70000 [31]. [c.56]

    Все белки денатурируются под действием кислот или при нагревании, что проявляется в коагуляции и уменьЩенин растворимости, а также в потере специфических биологических свойств. Определение молекулярного веса белков является трудной задачей. Исходя из содержания железа в гемоглобине крупного рогатого скота, было найдено, что молекулярный вес этого белка лежит в пределах 16 000— 17 000. Молекулярный вес казеина, определенный по содержанию легко отщепляющейся серы, равен 16 000 и т. д. Подобные выводы, однако, справедливы лншь прн том условии, что данный белок однороден и содержит в своей молекуле только один атом того элемента, который используется для расчета молекулярного веса. Криоскопическое определение молекулярного веса затрудняется тем, что даже растворимые белки образуют коллоидные растворы наблюдаемое малое понижение точки плавления соответствует большому весу мицеллы. Более подходящими являются методы, основанные на определении скорости диффузии и вязкости. Помимо них практическое значение приобрел предложенный Сведбергом способ определения велич1п-1ы частиц по скорости седиментации в ультрацентрифуге. [c.396]


    Из физико-химических констант белков важнейшая — это молекулярный вес. Сейчас имеется много методов измерения молекулярного веса белков. В частности, химический анализ зачастую дает возможность очень точного определения молекулярного веса. Так, например, в ципк-ннсулине один атом цинка связан с одной молекулой белка, п потому достаточно точно определить весовое содержание цинка в кристаллическом инсулине, чтобы рассчитать молекулярны11 вес. Таким же образом в мио-глобине имеется геминовая группа, т. е. один атом железа на белковую макромолекулу. Иногда белок содержит очень мало какой-либо одной аминокислоты и можно воспользоваться анализом на содержание этой аминокислоты, чтобы рассчитать молекулярный вес. Часто этот метод применяется в сочетании с другими. [c.111]

    Инсулин. Уже в 1889 году было показано, что при удалении поджелудочной железы у животных развивается диабет однако только в 1922 году Бантинг и Бест разработали метод получения активных экстрактов из панкреатической железы. Это через очень короткий промежуток времени позволило получить инсулин в количествах, достаточ-ых для лечения больных диабетом. В 1926 году этот гормон был получен в кристаллической форме было найдено, что он представляет собой белок с молекулярным весом около [c.350]

    Смит [243] детально изучили образование поперечных связей в двух белках — альбумине и кератине и привели данные о взаимодействии с этими белками 21 сшивающего агента, которые реагируют с аминогруппами белков. Растворимый белок альбумин обрабатывали сшивающим агентом в водном растворе, а осуществление сшивания определяли непосредственно в этом растворе, измеряя изменения молекулярного веса методом светорассеяния. В шерсти же, которая имеет дисульфидные поперечные связи естественного происхождения, образование новых сшивок можно было определять после первоначального разрушения дисульфидных мостиков. [c.427]

    Присутствие ММФ в препаратах НАД-киназы из скелетных мышц кролика было продемонстрировано также при фракционировании на колонке с сефадексом С-200 (3), а значения молекулярных весов олигомеров фермента были уточнены с помощью метода электрофореза в линейном градиенте концентрации полиакриламидного геля (ПААГ) [16]. Результаты, полученные при исследовании фермента двумя указанными методами, показали, что в частично очищенных препаратах НАД-киназы присутствуют олигомеры фермента с молекулярными весами 31000, 65000, 94 ООО, 60 ООО, 220 ООО, 350 ООО. Наименее ассоциированной формой НАД-киназы является белок с молекулярным весом 31 ООО, который, по-видимому, можно считать субъединицей фермента на том основании, что после обработки додецилсульфатом натрия двух низкомолекулярных фракций, снятых с колонки (31 ООО, 5 000), и последующего электрофореза на электрофореграммах не был обнаружен белок с молекулярным весом, меньшим 30 ООО. [c.138]

    Гемоглобин. — Этот белок ответственен за перенос кислорода из легких к тканям тела. Механизм дыхания животных может быть продемонстрирован на растворе гемоглобина следующим образом если раствор гемоглобина встряхивать с кислородом, он становится ярко-красным (артериальная кровь) если удалить кислород при помощи вакуум-насоса, раствор гемоглобина становится синевато-красным (венозная кровь). Легко может быть осуществлена кристаллизация окисленного гемоглобина— окоигемоглобина. Для этого раствор гемоглобина обрабатывают небольщим количеством спирта для понижения растворимости и оставляют яа 2—3 недели при 0°С. Последующие кристаллизации требуют все уменьшающихся количеств этилового спирта и меньше времени. Процентный состав оксигемоглобина слегка меняется для препаратов, полученных из различных животных. Типичная эмпирическая формула гемоглобина ( TasHues OjosNzoaSaFe) мини мальный молекулярный вес 16 500—17 000 (определен на основании содержания железа). Так как седиментационный метод дал величину в четыре раза большую, то п, вероятно, равно четырем. [c.671]

    Под названием гемоглобин объединяют многие виды белка, осуществляющего перенос кислорода. Гемоглобин имеет молекулярный вес порядка 64000, каждая его молекула содержит четыре группы гема, четыре атома железа и при насыщении связывает четыре молекулы кислорода. Миоглобин — это белок, который служит как депо кислорода. Он выделен из мышц. Его молекулярный вес равен 16000, каждая молекула содержит одну группу гема, один атом железа и при насыщении связывает одну молекулу кислорода. Миоглобин был первым белком, для которого была установлена детальная молекулярная структура (методом дифракции рентгеновских лучей, Кендрю, 1959 г.). Молекулярная структура гемоглобина также найдена с помощью этого метода. В действительности гемоглобин представляет собой тетрамер, все четыре составляющие которого имеют молекулярный вес порядка 16000 каждая и очень сходны с миоглобином как по аминокислотному составу, так и по пространственной конформации. [c.231]

    Если белок состоял из нескольких цепей, связанных дисульфидиы-ми мостиками, то такая обработка позволяет разделить белки на отдельные цепи, а затем исследовать каждую из цепей самостоятельно. Этим методом можно также определить, расположены ли дисульфидные мостики внутри одной цепи или между несколькими цепями. При окис- лении в первом случае молекулярный вес соединения остается неизменным. Метод был впервые применен Зангером для исследования инсулина. [c.515]

    Белки. 1. Инсул ин. Молекулярный вес 6000. Строение установлено в 1952 г. Зангером и Таппи. Состоит из двух цепей А и В, соединенных двумя дисульфидными мостиками. Цепь А состоит из 21 аминокислотного остатка, с Ы-концевой и С-концевой аминокислотами—-глицином и аспарагином. Цепь В содержит 30 аминокислотных остатков с фенилаланином на Ы-конце и аланином на С-конце цепи. Это первый белок, строение которого расшифровано полностью. В процессе этого исследования Зангером был разработан (комплекс методов, который послужил основой для всех последующих исследований строения белков. [c.527]

    Разделение на фильтрах из геля сефадекса позволяет использовать различие в молекулярном весе [21, 24, 126, 127]. Этот метод по своей эффективности приблизительно соответствует диализу, но может быть осуществлен гораздо быстрее. Линднер и др. [128] экстрагировали сухой препарат задней доли гипофиза свиньи (активность окситоцина и вазопрессина 2—3 Е /мг) пиридиноацетагным буфером. После нейтралит зации раствор пропускали через колонку с сефадексом G-25, элюировали этим же буфером и получили две фракции, дающие положительную реакцию с нингидрином. Первая, более подвижная фракция содержит окситоцин и вазопрессин в виде комплексов пептид — белок вторую фракцию, состоящую из низкомолекулярных неактивных соединений, отбрасывали. Десятиминутная обработка первой фракции 1 М муравьиной кислотой при 70 приводит к диссоциации комплекса и при повторном пропускании через сефадекс G-25 и элюировании 1 М муравьиной кислотой получили медленно передвигающуюся фракцию вазопрессина и окситоцина с активностью приблизительно 100 Е мг. [c.409]

    Разработаны химические методы определения величины полинептидных цепей белковой молекулы. Эти методы основаны на использовании особого реагента (динитрофторбензола), который соединяется со свободной а-амино-грунной аминокислотного остатка, стоящего на конце нолипептидной цепи, с образованием окрашенного комплекса этот комплекс можно выделить и идентифицировать после того, как белок подвергнется гидролизу на составляющие его аминокислоты (в том числе и на конечную аминокислоту с присоединенной к ней окрашенной группой). Так, лизоцим, белок, содержащийся в слезах и яичном белке и обладающий свойством уничтожать бактерии, имеет, как было установлено ири помощи ультрацентрифуги, молекулярный вес около 14 ООО и состоит примерно из 125 аминокислотных остатков. Применение описанного метода позволило показать, что имеется лишь одна свободная а-аминогруппа, и на этом основании был сделан вывод, что данная молекула состоит из одной нолипептидной цепи. Если эта полипептид-ная цепь была бы растянута, то ее длина составляла бы около 450 А. Однако, как установлено при помощи ультрацентрифуги, дифракцией рентгеновских лучей и другими методами исследования, молекула лизоцима по форме близка к шару с диаметром около 25 А. Отсюда следует, что нолипептидная цепь не может быть вытянутой, а должна быть скрученной, ибо только тогда молекула приобретет сферическую форму. [c.487]

    Фермент, выделяемый обычными методами, катализирует не только реакцию (1), но также реакции (2) и (5) однако свободный индол в качестве промежуточного продукта в реакции (1) не образуется. Сейчас известно, что чистый фермент (мол. вес 105 ООО) представляет собой комплекс, который можно разделить хроматографическими методами на две белковые 5 фракции А и В. Белок А состоит из одной полипептидной цепи с молекулярным весом 29 500. Цепь построена из 272 аминокислот (и не содержит триптофана). Остальную часть комплекса составляет белок В. Ни белок А, ни белок В в отдельности реакцию (I) не катализируют реконструированный фермент (молекула которого состоит из одной молекулы А и одной молекулы В) вновь приобретает способность осуществлять свою] функцию. Белок А хотя и слабо, но все же катализирует реакцию (2), а белок В — реакцию (5), что позволяет определять эти компоненты триптофансинтетазы в экстрактах другой, более удобный способ основан на определении недефектного белка А внутриклеточно, с помощью теста на комплементацию, или вне клетки — по ферментативной активности. [c.497]

    Наиболее удобной системой ионитов, обладающих различной степенью набухания, дл>[ разделения аминокислот, полипептидов и белко]) оказались сульфосмолы типа СБС, в основе структуры которых лежит сульфостирол [34]. Гак, например, на смоле СБС с коэффициентом набухания, равным 4.5, можно отделить низкомолекулярный белок инсулин от сывороточных альбулина и глобулина, а на смоле с коэффициентом набухания, равным 2, от аминокислот отделяются белки любого молекулярного веса. Различная степень пористости ионитов, играющая столь ажную роль в методе молекулярных сит , может быть достигнута не только введением определенного количества мостикообразую- [c.30]

    Найденные таким путем молекулярные веса яичного и сывороточного альбумина и гемоглобина оказались равными соответственно 45, 69 и 72 тысячам, что хорошо совпадает с данными, получаемыми другими методами. К сожалению, осмометриче-ские методы не дают возможности судить, является ли белок растворе гомогенным, или же он представляет смесь белков различных молекулярных весов. В последнем случае мы получаем, как уже упоминалось, так называемое среднечисленное значение молекулярного веса. Кроме того, определение молекулярного веса по осмотическому давлению малопригодно для белков с относительно высоким молекулярным весом (порядка сотен тысяч и миллионов). [c.132]

    Необходимо подчеркнуть, что ни частичный удельный объем V6, ни кажущийся удельный объем (г б)к. б не показывают действительного объема, занимаемого белком в системе белок — вода. При получении этих данных было сделано допущение, что объем системы белок—вода равен сумме объемов водной и белковой фаз, следовательно, не было принято в расчет наличие гидратированных белковых мотекул. Поэтому мы не в праве вычислять степень гидратации из г/ или ( Ув)к.,б- Тем не менее результаты, полученные этим способом, имеют значение для оценки результатов, полученных другими методами, и для вычисления молекулярного веса белков по скорости оседания в ультрацентрифуге (см. гл. IV). [c.104]

    Таким образом, теория строения белков как полипептидов, обоснованная Э. Фишером, стала прочным фундаментом исследования белков. Неясным оставалось, как при столь однообразном строении различных белков объяснить их весьма разнообразные физические и биохимические свойства. В 20-х годах XX века на примерах каучука, целлюлозы, крахмала были развиты представления о высокомолекулярных соединениях. В то же время были разработаны методы определения молекулярного веса высокомолекулярных соединений и, в частности, белков. Ранее о минимальном молекулярном весе протеидов судили по содержанию в них простетических групп (или каких-либо специфических атомов этих групп, например атома железа в гемоглобине), исходя из предположения, что одна простетическая группа содержится в одной молекуле протеида. Молекулярные веса и таким путем получились огромные, например для гемоглобина 68 000. Применение осмометри-ческого метода определения молекулярного веса (Серенсен, 1917 г.) и особенно разработка ультрацентри(1)угальпого метода (Сведберг, 1926 г.) позволили систематически исследовать молекулярные веса растворимых белков. Оказалось, что их молекулярные веса располагаются в широком интервале величин от 10 000 и ниже для ряда ферментов и гормонов (6500 для инсулина) до 6 600 000 (гемоцианин улитки) и даже до 320 000 000 (белок вируса гриппа). Если принять средний молекулярный вес аминокислотного остатка, входящего в полипептидную цепь белка, равным 115, то окажется, что число аминокислотных остатков в молекулах белков колеблется от нескольких десятков до немногих миллионов. Таким образом, уже по молекулярным весам белки представляют величайшее разнообразие. Простейшие из них вряд ли могут быть отнесены к высокомолекулярным соединениям, между тем как некоторые представляются одними из высокомолекулярных соединений с наиболее громоздкими молекулами. Существеннейшим отличием белков как высокомолекулярных соединений от таких синтетических полимеров, как капрон, полистирол, и таких природных высокомолекулярных соединений, как каучук, целлюлоза, крахмал, является разнообразие элементарных звеньев ( мономеров ), из которых построены белки. Взамен одного мономера (например, остатка ю-аминокапроно-вой кислоты или глюкозы, стирола, изопрена) в белки входит более 20 разных аминокислотных остатков. Это было и вдохновляющим и обескураживающим обстоятельством. Если молекула состоит всего из 20 разных аминокислотных остатков, для нее возможно [c.655]

    За последнее десятилетие были достигнуты значительные успехи в дальнейшем установлении точного строения различных белков. Хотя гидролиз белков и последующий анализ гидролизата, который широко использовался раньше, давал возможность получать данные об относительном содержании и природе входящих в состав белка аминокислот, он не позволял сделать какие-либо выводы о распределении аминокислот в полипептидной цепи молекулы белка. Методы анализа и разделения аминокислот до сороковых годов были очень длительными и трудоемкими н требовали сравнительно больших количеств исходного продукта. Разработанные в 40-х годах новые методы анализа и разделения аминокислот и определения концевых групп в молекулах белков и не слишком высокомолекулярных полипептидов создали возможность наметить основные направления решения исключительно важной проблемы выяснения специфической последовательности аминокислот в молекулах некоторых сравнительно простых белков. Первым большим достижением в этой области химии была расшифровка Сангера с сотр. [4] последовательности аминокислот в молекуле инсулина. С момента опубликования этой важнейшей работы, достигшей цели, которая в течение длительного времени казалась неосуществимой, была полностью выяснена последовательность аминокислот у нескольких белков. Установление того факта, что молекулы специфического белка являются однородными по молекулярному весу и содержат строго определенную последовательность аминокислотных звеньев, неизменную для всех макромолекул, явилось одним из наиболее важных достижений химии белка. В число белков, для которых была выяснена последовательность аминокислот, входят инсулин [4], цитохром С [5—7 , белок вируса табачной мозаики [8—10], рибонуклеаза [11 — 13], а- и Р-цепи гемоглобина человека [14, 15], миоглобин кита [16—18], кортикотропин [19—21], глюкагон [22] кроме того, была установлена последовательность аминокислот в некоторых полипептидах более низкого молекулярного веса и частично выяснена последовательность аминокислот у нескольких высокомолекулярных белков [23]. [c.329]

    Не меньшей популярностью пользуется в настоящее время и метод электрофореза в полиакриламидном геле. Добавляя к раствору акриламида, налитому в стеклянные трубки, различные количества мономеров (например, метиленбисакриламид, этилендиакрилат), образующих в процессе полимеризации поперечные сшивки, можно получить гели с различной степенью связанности [137, 404]. Устойчивость к денатурирующим растворителям, например к 8 М раствору мочевины или 1 %-ному раствору додецилсульфата натрия, составляет еще одно важное преимущество этих гелей. При наложении разности потенциалов белки, пептиды, нуклеиновые кислоты и вирусы передвигаются в этих гелях на характерные расстояния, которые зависят главным образом от их молекулярного веса (или веса частицы), а также от степени связанности сшивок геля. Разделившиеся вещества образуют характерные полосы, которые можно выявить либо с помощью методов окрашивания или локального осаждения, либо (в случае разделения радиоактивных веществ) с помощью метода радиоавтографии (см. гл. XI, разд. Б). Разрешающая способность электрофореза в полиакриламидном геле такова, что с помощью этого метода можно обнаружить и идентифицировать приблизительно 37 видов рибосомных белков [508]. То, что разделение белка на многочисленные полосы происходит в силу действительного различия между белками, а не в результате каких-то артефактов, теперь уже не вызывает солшений. Однако известно, что разделяться на отдельные полосы могут не обязательно совершенно различные вещества, но и такие близкие между собой вещества, как, например, один и тот же белок, у которого часть молекул содержит одну лишнюю амидную (— СО — NH2 С00 ) группу, а другая часть — ацетильную (—NH+— NH — СОСН3) группу [136]. С помощью электрофореза в полиакриламидном геле [c.61]

    Наличие в белке более чем одной полипептидной цепи устанавливают, определяя его молекулярный вес в условиях, вызывающих денатурацию (например, в 1%-ном растворе додецилсульфата натрия). Для этого определяют молекулярный вес препарата до и после восстановления имеющихся в белке дисульфидных связей (меркаптоэтано-лом или дитиотреитолом). При этом рекомендуется закреплять образующиеся после восстановления 8Н-группы алкилированием с помощью иодоацетата, иодацетамида или этиленимина (фиг. 10). Для определения приблизительного молекулярного веса белка, а также для обнаружения его субъединиц или фрагментов (если вирусный белок состоит из нескольких цепей) — независимо от того, находятся ли они в свободном виде или организованы в более сложную структуру, образованную вторичными или дисульфидными связями (остатками цистина),— можно использовать метод электрофореза в полиакрил- [c.69]


Смотреть страницы где упоминается термин Метод молекулярного веса белков: [c.163]    [c.456]    [c.267]    [c.106]    [c.26]    [c.111]    [c.37]    [c.416]    [c.258]    [c.422]    [c.58]    [c.159]    [c.197]    [c.25]    [c.246]    [c.30]    [c.161]   
Курс коллоидной химии 1974 (1974) -- [ c.103 ]




ПОИСК





Смотрите так же термины и статьи:

Методы определения молекулярного веса белков

Молекулярная метод Метод молекулярных



© 2025 chem21.info Реклама на сайте