Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория электрической проводимости растворов электролитов

    Согласно теории Аррениуса некоторые вещества, называемые электролитами, обладают способностью при растворении в различных растворителях распадаться на ионы. Количество ионов, образовавшихся в результате диссоциации одной молекулы, так же как величина и знак заряда этих ионов, зависит от природы электролита. Ионы в растворе электролитов являются переносчиками электричества. Не все электролиты диссоциируют в одинаковой степени сильные электролиты практически полностью диссоциированы и поэтому хорошо проводят ток, слабые электролиты диссоциируют незначительно и, вследствие этого, проводят ток хуже. В растворе электролита ионы обладают тепловым движением, т. е. беспорядочно движутся с самыми различными скоростями. Если раствор поместить в электрическое поле, то ионы, сохраняя свое тепловое движение, начнут смещаться по направлению силовых линий поля. При этом движение катионов будет происходить в направлении, прямо противоположном движению анионов. Так как ионы являются носителями зарядов, то их направленное перемещение представляет собой прохождение электрического тока через электролит. Чем больше зарядов имеет ион и чем большее количество ионов пройдет в секунду через сечение раствора, перпендикулярное силовым линиям поля, тем больше будет электрическая проводимость раствора. Для раствора электролита количество ионов, прошедших через данное сечение, определяется их концентрацией и скоростью движения по направлению, перпендикулярному этому сечению. Эта скорость пропорциональна при прочих одинаковых условиях градиенту потенциала [c.269]


    Создание количественной теории полярографических максимумов 1-го рода встречает значительные математические трудности, которые вызваны главным образом сложными геометрическими условиями. Строгая теория тангенциальных движений была разработана для свободной капли в электрическом поле. Рассмотрим вначале идеально поляризуемую каплю (рис. 105, а). Если ртутная капля в электролите оказывается во внешнем электрическом поле, то она приходит в движение. Механизм этого движения отличается от механизма электрофореза, а скорость его может превышать скорость электрокинетического движения при равных условиях на пять порядков. Из-за наличия двойного электрического слоя ток, проходящий через раствор, обтекает каплю и распределение электрических силовых линий вне двойного слоя оказывается таким же, как и вблизи изолятора. Однако внутри капли благодаря металлической проводимости потенциал остается постоянным. Чтобы это условие выполнялось, скачок потенциала в правой части капли должен быть выше, чем в левой. В результате возникает градиент пограничного натяжения, который приводит к вихревым движениям в капле (рис. 105, б). Эти движения вызывают реактивное отталкивание капли от окружающей среды и движение положительно заряженной капли по направлению поля, а отрицательно заряженной — в обратном направлении. Скорость этого движения [c.193]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]



Смотреть страницы где упоминается термин Теория электрической проводимости растворов электролитов: [c.20]   
Смотреть главы в:

Основы физической химии -> Теория электрической проводимости растворов электролитов




ПОИСК





Смотрите так же термины и статьи:

Проводимость

Проводимость электрическая

РАСТВОРЫ — ЭЛЕКТРОЛИТЫ Теория электролитов

Растворов теория растворов

Растворы теория

Растворы электролитов

Растворы электролитов. pH растворов

Теория электрической проводимости

Электрическая проводимость растворов электролитов

Электрическая проводимость электрической проводимости

Электрическая проводимость электролитов

Электрический в растворах

Электролиты теория



© 2025 chem21.info Реклама на сайте