Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический в растворах

    Коагуляция может происходить и в тех случаях, когда в растворе встречаются коллоидные частицы, несущие разноименные-электрические заряды, например при смешении отрицательно заряженного золя кремневой кислоты с положительно заряженным золем желатина и т. д. Этот прием успешно применяется для быстрого определения 5102 в различных объектах. [c.106]

    В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет ток электрических зарядов , или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор. [c.58]


    Электрические свойства соли и сахара — такие же, как у воды. Поэтому они растворяются в воде. [c.33]

    Гидроксильная группа в составе молекулы вещества придает ему электрические свойства, напоминающие свойства ъоды. Это означает, что если метан не растворяется в воде, то метиловый спирт растворяется. Больше того, любое количество метилового спирта можно смешать с любым количеством воды причем, взглянув на получившийся раствор, вы никогда не подумаете, что в нём смешаны две разные жидкости. [c.86]

    В XIX в. проблемой получения фтора занимались многие химики, начиная с Гемфри Дэви. Успех выпал на долю французского химика Анри Муассана (1852—1907). Муассан решил, что поскольку платина относится к числу тех немногих веществ, на которые фтор не действует, то не остается ничего другого, как изготовить, несмотря на дороговизну, все оборудование из платины. Более того, чтобы понизить активность фтора, он охладил реакционную смесь до —50°С. Поместив раствор фторида калия в плавиковой кислоте в специально изготовленный платиновый сосуд, Муассан пропустил через раствор электрический ток и достиг цели. Так в 1886 г. был наконец выделен бледно-желтый газ — фтор. [c.142]

    Крупнейшим физико-химиком на рубеже XIX—XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус (1859—1925) Еще будучи студентом Упсальского университета, Аррениус заинтересовался электролитами, т. е. растворами, способными пропускать электрический ток. [c.118]

    Как известно, одним из факторов, препятствующих сцеплению коллэидных частиц друг с другом, является наличие у них одноименных электрических зарядов, между которыми действуют силы электростатического отталкивания. Заряды эти возникают вследствие адсорбции частицами ионов из раствора и могут быть нейтрализованы в результате адсорбции ионов противоположного знака. Вследствие этого процесс коагуляции коллоидных растворов может быть вызван прибавлением какого-либо электролита, противоположно заряженные ионы которого, адсорбируясь на поверхности частиц, нейтрализуют заряд коллоидных частиц и таким образом дают им возможность сцепляться между собой. При этом коагулирующая концентрация электролита (т. е. минимальная концентрация его, требуемая для коагуляции данного коллоидного раствора) увеличивается с уменьшением валентности того иона, заряд которого противоположен заряду коллоидных частиц. Так, в случае золя AS2S2, частицы которого заряжены отрицательно, коагуляция вызывается адсорбцией катионов, причем коагулирующие концентрации А1з+, Ва2+- и К+-ионов относятся как 1 20 1000. [c.105]

    Коэффициенты активности можно найти, сравнивая аналитические концентрации с теми величинами, которые следует иодставлять в уравнения для растворов электролитов, для tofo чтобы получить соответствие уравиений с опытом. Необходимо иметь в виду, что характер взаимодействия и связанный с ним поправочный множитель зависят от того, находится лн раствор электролита в равновесии, иод действие.м внешнего электрического поля, или же в состоянии еш,е не установившегося рав ювесия, когда его состав не везде одинаков. Коэффициенты активности характеризуют силы взаимодействия в условиях равиовесня. Поэтому для их расчета следует пользоваться результатами измерений, проведенных в растворах, находящихся в состоянии равновесия, Этому условию отвечают данные по определению величии осмотического давления, температур кипения и затвердевания, э.д.с. и т. д. [c.79]


    Говоря об открытии и изучении электролитической диссоциации, нельзя забывать о работах прибалтийского ученого Теодора Гротгуса (1785—1822). В 1805 г. он развил теорию электропроводности растворов, в 1818 г. предложил теорию состояния молекул (ионов) в растворе. В этой теории он развил представление о том, что атомы вещества могут приобретать электрические заряды и что свойства таких атомов отличны от свойств атомов нейтральных. Биографию Т. Гротгуса см.1 Страдынь Я- П. Теодор Гротгус. 1785—1822.—М. Наука, 1966, 184 с. [c.184]

    Законы Фарадея легко объяснить с точки зрения современных представлений о сущности процесса электролиза. Как известно, электрический ток в растворах переносится исключительно ионами, которые при электролизе перемещаются к противоположно заряженным электродам и разряжаются на них. Отсюда следует, что чем больше электричества пройдет через раствор, тем большие количества соответствующих веществ выделятся на электродах (первый закон Фарадея). [c.425]

    Главной опасностью при внутреннем электролизе является цементация, т. е. разряжение части ионов определяемого металла непосредственно на самой анодной пластинке. Для предотвращения цементации катод отделяют от анода перегородкой (диафрагмой), чаще всего из коллодия. При некоторых исследованиях пользовались довольно сложными установками, содержащими два электролита католит, которым служил анализируемый раствор, и ано-лит — раствор какой-либо соли, в который погружали анод. Один или даже оба раствора перемешивали при помощи специальных электрических мешалок. [c.450]

    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]

    Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие элекфичество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ноны переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым. [c.118]

    И все-таки приложив достаточный электрический потенциал, можно пропустить ток через любой материал — твердый, жидкий и газообразный. Первые исследователи электричества в своих еще не очень серьезно обоснованных экспериментах установили, что некоторые жидкости, например растворы солей, проводят электрический ток сравнительно легко. Молния — электрический разряд, образующийся во время грозы,— мгновенно распространяется через толщу воздуха в несколько километров. [c.145]

    Дэви сконструировал электрическую батарею, в которой насчитывалось более 250 металлических пластин это была самая сильная из имевшихся в то время батарей. Пропуская ток, который давала эта батарея, через растворы соединений, предположительно содержащих неизвестные элементы, Дэви пытался таким образом выделить эти элементы, однако успеха не добился. Он только разложил воду и получил водород и кислород. [c.66]

    Реально существующие частицы, благодаря которым электрический ток проходит через раствор или расплав, Фарадей назвал ионами (от греческого iov — идущий). Ионы, перемещающиеся по направлению к аноду, он назвал анионами, а ионы, перемещающиеся по направлению к катоду,— катионами. [c.67]

    Ес.чи в чистый растворитель с диэлектрической ироннцаемостью 1], ввести электролит, то часть молекул растворителя будет ориентироваться в электрическом поле, создаваемом зарядами ионов электролита. Диэлектрическая проницаемость растворителя должна при этом уменьшаться, так как некоторые из его молекул окажутся ориентированными вокр>т ионов и сделаются пассивными но отношению к внешнему полю. Поэтому диэлектрическая проницаемость раствора ииже, чем исходного растворителя, причем она достигает наименьшего значения в непосредственной близости от иоиа. В случае ионов разных размеров, но с одинаковым зарядом уменьшение диэлектрической проницаемости тем заметнее, чем меньше радиус иона. В соответствии с этим Уэбб подставляет в формулу Борна для каждого радиуса отвечающее ему значение диэлектрической проницаемости Р ,, K( тi)poe всегда меньше, чем диэлектрическая проницаемость чи т()г(J растворителя. [c.56]

    Здесь z представляет собой заряд соответствующего иона, а 1 — так называемую ионную силу раствора. Последняя является мерой напряженности электрического поля, существующего в растворе, и вычисляется по формуле [c.78]


    Равновесие последней реакции смещено, как правило (за исключением очень разбавленных растворов), влево, поэтому ионогены в водных растворах обычно слабые электролиты и плохие проводники электрического тока. [c.48]

    Вещества, молекулы которых имеют такие же электрические свойства, как молекула воды, растворяются в воде, но не растворяются в углеводородах. И наоборот — вещества, молекулы которых имеют такие же электрические свойства, как молекулы углеводородов, растворяются в них и не растворяются в воде. [c.33]

    В одной из первых теорий электрэпроводности растворов электролитов— Б гидродинамической, или классической, теории — прохождение тока рассматривалось как движение жестких заряженных шаров-ионов под действием градиента электрического потенциала в непрерывной жидкой вязкой среде (растворителе), обладающей определенной диэлектрической проницаемостью. Конечно, ионы перемещаются и в отсутствие электрического поля, но это беспорядочное тепловое движение, результирующая скорость которого равна нулю. Только после наложения внешнего электрического поля возникает упорядоченное движение положительных (по направлению поля) и отрицательных (в противоположном направлении) ионов, лежащее в основе переноса тока. Скорость такого направленного движения ионов определяется электрической силой и силой трения. В начальный момент на ион действует только первая сила, представляющая собой произведение заряда иона qi на градиент потенциала grad ijj  [c.118]

    Следовательно, источником электрической энергии в данной концентрационной цепи является перенос /+ молей хлорида водорода от более концентрированного раствора к менее концентрированному. Из уравнений (7.7) и (9.7) получается следующее выражение для э.д.с. анионной концентрационной цепи второго рода  [c.199]

    Влияние существующего в растворе электрического поля на определяемые катионы исключают, добавляя к раствору концентрированный раствор какого-либо электролита, содержащего катион с высоким потенциалом восстановления (обычно раствор соли щелочного или щелочноземельного металла). При этом перенос тока будет происходить практически только за счет движения ионов этого электролита. Определяемые же ионы, поскольку концентрация их гораздо меньше, будут играть Б этом переносе такую ничтожно малую роль, что без заметной ошибки можно считать их появление у катода обусловленным исключительно процессом диффузии из более отдаленных частей раствора. Только пр этом условии можно считать, что высота полярографической, волны пропорциональна концентрации восстанавливающихся на катоде (определяемых) ионов. Такие растворы электролитов, с помощью которых устраняется влияние электрического поля, называются основными растворами или фоном. [c.455]

    А жиры и масла, которые содержатся в нашей пище, по электрическим свойствам своих молекул близки к углеводородам. Поэтому они растворяются в углеводородах. [c.33]

    Обычно МагСОз содержит небольшое количество влаги, поэтому перед употреблением его нужно прокалить в электрической печи при 270—300°С до постоянной массы. Титрование МагСОз рассмотрено выше (см. 65), следует только учесть, что при титровании по метиловому оранжевому в растворе накапливается СОг и конец титрования может быть не очень отчетливым. Для получения отчетливого изменения цвета индикатора нужно титруемый раствор в конце титрования прокипятить 1—2 мин для удаления СОг, охладить и закончить титрование. При использовании в качестве исходного вещества НеО в раствор вводят избыток Вг", при этом происходит реакция  [c.296]

    Напомним, что электрические заряды в растворах переносятся ионами, и поэтому чем больше в растворе ионов и чем быстрее они движутся, тем больше будет электропроводность раствора, и наоборот. [c.194]

    Песочной баней называется металлический сосуд с песком, нагреваемый газовыми горелками или электрическим током. Изменяя толщину слоя песка, легко р тулировать степень нагрева сосудов с растворами. [c.189]

    Межионное взаимодействие при неравновесных процессах, в частности ири прохождении электрического тока через растворы электролитов (явление электропроводности), должно иметь иной характер, чем в условиях равновесия. Предложенный Бьеррумом коэффициент электропроводности вносит поправку на силы взаимо- [c.120]

    Пример 8-3. Изо.электрические растворы сывороточного альбумина быка (САБ) при 25°С имеют осмотические давления, приведенные в таблицах. В случае расгвора нативного САБ в 0,15 М Na I  [c.88]

    Влияние на параметры активации, найденные в изоди-электрических растворах и растворах гостоя1Шого состава, удовлетворительно рассчитывается на основе электростатической теории. [c.304]

    Химически чистый Na l для устанонки титра получают, прибавляя к концентрированному раствору продажной возможно более чистой соли концентрированную H I (или пропуская через раствор газообразный хлористый водород). При этом под влиянием одноименных С1 -ионов растворимость Na l понижается и часть его выпадает в осадок. Выделившиеся кристаллы после отделения от раствора и промывания прокаливают в электрической печи при 500—600 С для уда. ения H I и воды. [c.329]

    После сожжения навески 2 г стали в токе кислорода в электрической печи иа титрованне образовавшегося при этом ЗОз, поглощенного затем водой, израсходовано 3,33 мл 0,01125 н. раствора иода. Определить процентное содержание серы в стали. [c.419]

    При прохождении через раствор электрического тока на электродах выделяются продукты электролиза. Эти продукты, присутствуя совместно с ионами, из которых они образовались, представляют собой окислительно-восстановительные пары. Например, пр1т электролизе раствора СиСЬ у катода образуется пара Си +/Си, а анода С12/2С1 . Точно так же при электролизе Си304 у катода [c.426]

    Поясним эти понятия на примере металла и раствора электролита. Вследствие определенной упругости электронного газа и подвижности электронов некоторая часть из них может перейти из металла в вакуум, оставаясь, однар о, связанной с металлом за счет сил электрического отображения и сил притяжения между ними и поверхностными ионами решетки (рис. 3, а). [c.25]

    Ход определения. Навеску (1—2 г) стали (или чугуна) растворяют при нагревании (под тягой) на электрической или песочной бане в разбавленной (1 5) Н2504. Когда прекратится выделение водорода, окисляют раствор концентрированной НМОз, прибавляя ее по каплям до прекращения вспе-ниваппя. Избыток НЫОз удаляют осторожным выпариванием раствора до появления белого дыма 50з. После охлаждения осторожно наливают в стакан 70—80 мл холодной воды и нагревают смесь до полного растворения солей. [c.447]

    Первая количественная теория растворов электролитов, т. е. растворов веществ, способных пров13дить электрический ток, была выдвинута Аррениусом в 1883—1887 гг. Дальнейщее развитие эта теория получила в трудах В. Оствальда, П. И. Вальдена, Л. В. Пи-саржевского и др. Она основана hii трех постулатах. [c.34]

    Современная теория аномально высокой подвижности водородных и гидроксильных ионов, разработанная рядом авторов, особенно Берналом и Фаулером, п )едставляет собой развитие и модификацию представлений о механизме электропроводности электролитов, высказанных русским ученым Гротгусом в начале XIX в. Суть этой теории состоит в том, что в водных растворах и в ряде других растворов протои, как по цеиочке, передается в направлении, совпадающем с направлением электрического поля от нона гидроксония к молекуле воды, превращающейся прн этом в ион шдро-ксония, а от нее к соседней молекуле и т. д. (цепочечный или эстафетный механизм электропроводности)  [c.130]

    Градиент потенциала в растворе электролита может возникать либо в результате наложения внешнего электрического поля на электрохимическую систему (см. гл. 4 и 5), либо в результате различия в скоростях движения положительных и отрицательных ионов, приводящего к появлению так называемого диффузионного потенциала (см. ниже). Следовательнс, в отличие от злектропроводно-сти, где можно было пренебречь и конвекцией, и молекулярной диффузней и рассматривать миграцию в чистом виде, при изучении диффузии электролитов необходимо учитывать градиенты как химического, так и электрического потенциалов. [c.140]

    Такая чисто ионная концепция приводила, однако, к невозможности истолкования )яда проблем, связанных с возникпове ием э. д. с. в электрохимических системах н с поведением металлов, находящихся в контакте с растворами, содержащими их ионы. Так, в частности, встречаются трудности при выяснении проблемы, где и как в обратимой электрохимической системе генерируется электрическая энергия (проблема Вольты), ошечающая максимальной работе токообразующей реакции. Действительно, общее уравнение для э. д. с. [c.227]

    Коэффициент электропроводности [х должен быть функцией концентрации, и его можно определить эскпериментально. Теоретический расчет основан на определенных представлениях о строе-мни растворов, а также на учете характера изменений, происходящих в растворах под влиянием приложенного электрического ноля. [c.121]


Смотреть страницы где упоминается термин Электрический в растворах: [c.67]    [c.406]    [c.189]    [c.33]    [c.57]    [c.107]    [c.117]    [c.123]    [c.135]    [c.146]    [c.165]   
Физическая и коллоидная химия (1988) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция из растворов электролитов. Образование и строение двойного электрического слоя

Влияние омического сопротивления раствора и емкости двойного электрического слоя на форму полярограмм в методах с линейной и треугольной разверткой потенциала

Влияние сильного электрического поля на электропроводность растворов электролитов

Граница раздела двух несмешивающихся растворов электролитов двойной электрический слой

ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ В НЕВОДНЫХ РАСТВОРАХ ПЕЙН)

Движение иона в электрическом поле в бесконечно разбавленном растворе

Двойной электрический слой и явления адсорбции на границе электрод — раствор

Двойной электрический слой иа границе металл—раствор

Двойной электрический слой катионов металла из раствора

Двойной электрический слой металл—раствор

Двойной электрический слой на границе полупроводник раствор и след

Двойной электрический слой на границе раствор воздух

Двойной электрический слой на границе электрод — раствор

Двойной электрический слой образованный за счет выхода катионов металла в раствор

Двойной электрический, слои. Адсорбция на границе металл—раствор Общие вопросы электрохимической кинетики и теория водородного перенапряжения

Измерение удельных электрических характеристик растворов с помощью бесконтактных ячеек

Измерение электрической проводимости раствора мостом переменного тока

Измерение электрической проводимости растворов

Измерение электрической проводимости растворов электролитов

Измерение электрической проводимости растворов. Определение константы кондуктометрической ячейки

Измерения электрических характеристик растворов

Изучение влияния температуры на электрическую проводимость и вязкость растворов электролитов в воде и водно-органических растворителях

Исследование электрической проводимости растворов электролитов

Локальное электрическое поле в месте расположения молекулы, находящейся в растворе

Локальное электрическое поло в месте расположения молекулы, находящейся в растворе

Молярная и удельная электрическая проводимость растворов солей в пропан-1-оле

Молярная и удельная электрическая проводимость растворов электролитов в 2-метилпропан-1-оле при

Молярная и удельная электрическая проводимость растворов электролитов в пент-1-оле при

Молярная и удельная электрическая проводимость растворов электролитов в пропан-2-оле при

Молярная и удельная электрическая проводимость растворов электролитов в формамиде при

Молярная электрическая проводимость разбавленных водных растворов электролитов при

Молярная электрическая проводимость растворов

Молярная электрическая проводимость растворов кислот в метаноле

Молярная электрическая проводимость растворов кислот в пропан-1 -оле

Молярная электрическая проводимость растворов кислот в этаноле

Молярная электрическая проводимость растворов органических оснований при

Молярная электрическая проводимость растворов хлороводорода в бутан-1-оле при

Молярная электрическая проводимость растворов электролитов в бензоле при

Молярная электрическая проводимость растворов электролитов в бромоводороде при

Молярная электрическая проводимость растворов электролитов в диоксиде серы при

Молярная электрическая проводимость растворов электролитов в формамиде

Молярная электрическая проводимость растворов электролитов в хлороводороде при

Молярная электрическая проводимость растворов электролитов в этиленкарбонате при

Молярная электрическая проводимость растворов электролитов во фтороводороде при

Новый справочник химика и технолога Удельная и молярная электрическая проводимость растворов электролитов в ЛД-диметилформамиде при различных температурах

Новый справочник химика и технолога Эквивалентная электрическая проводимость разбавленных растворов солей при

О теориях электрической поляризации растворов Дебая и Онзагера

Обработка загрязненных поверхностей растворами при наложении электрического поля

Определение константы диссоциации слабой кислоты по электрической проводимости раствора

Определение критической концентрации мицеллообразования по изменению электрической проводимости раствора ПАВ

Определение растворимости труднорастворимого вещества по удельной электрической проводимости раствора

Определение электрической проводимости растворов. Кондуктометрическая ячейка. Принципиальная схема кондуктометра

Оптические, электрические и гидродинамические свойства растворов

ПЕРЕНОС ЭЛЕКТРИЧЕСКОГО ЗАРЯДА В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Подвижность ионов гидроксония и гидроксила . 167. Электрическая проводимость неводных растворов

Предельная молярная электрическая проводимость растворов иодида натрия в 2-метилпропан-1-оле и бутан-2-оле

Предельная молярная электрическая проводимость растворов электролитов в 2-метилпропан-1-оле при

Предельная молярная электрическая проводимость растворов электролитов в бутан-1-оле при различных температурах

Предельная молярная электрическая проводимость растворов электролитов в высших спиртах при

Предельная молярная электрическая проводимость растворов электролитов в высших спиртах при различных температурах

Предельная молярная электрическая проводимость растворов электролитов в пент-1-оле

Предельная молярная электрическая проводимость растворов электролитов в пропан-2-оле при

Предельная молярная электрическая проводимость растворов электролитов в пропан-2-оле при различных температурах

Предельная эквивалентная электрическая проводимость ионов в водных растворах при

Предельная эквивалентная электрическая проводимость ионов в водных растворах при различных температурах

Предельная эквивалентная электрическая проводимость растворов в этаноле

Предельная эквивалентная электрическая проводимость растворов электролитов в ДД-диметилацетамиде при

Предельная эквивалентная электрическая проводимость растворов электролитов в ДД-диметилформамиде при различных температурах

Предельная эквивалентная электрическая проводимость растворов электролитов в ЖД-диметилформамиде при

Предельная эквивалентная электрическая проводимость растворов электролитов в бутан-1-оле при

Предельная эквивалентная электрическая проводимость растворов электролитов в метаноле при

Предельная эквивалентная электрическая проводимость растворов электролитов в метаноле при различных температурах

Предельная эквивалентная электрическая проводимость растворов электролитов в этаноле

Предельная эквивалентная электрическая проводимость растворов электролитов в этиленгликоле при

Предельная электрическая проводимость растворов электролитов при

Примеры определения электрической проводимости водных растворов

Прохождение электрического тока через раствор. Числа переноса

Прохождение электрического тока через растворы солей, кислот и щелочей

Пути электрического тока через раствор

Различные случаи образования двойного электрического слоя на границе электрод — раствор

Рассеяние электрического тока в растворе

Растворы в электрических полях высокой частоты

Скачки потенциала на фазовых границах . 6- Образование двойного электрического слоя на границе электрод-раствор

Сопротивление электрическое металлов растворов

Строение двойного электрического слоя на границе между электродом и раствором электролита

Строение двойного электрического слоя на границе раствор — металл . 175. Термодинамика обратимых электрохимических систем

Теории электрической проводимости растворов

Теория электрической проводимости растворов Дебая — Онзагера

Теория электрической проводимости растворов электролитов

Удельная и молярная электрическая проводимость растворов электролитов в 1,2-диметоксиэтане

Удельная и молярная электрическая проводимость растворов электролитов в AyV-диметилформамиде при

Удельная и молярная электрическая проводимость растворов электролитов в ацетонитриле при

Удельная и молярная электрическая проводимость растворов электролитов в бензоле

Удельная и молярная электрическая проводимость растворов электролитов в диметилсульфоксиде при

Удельная и молярная электрическая проводимость растворов электролитов в диметилсульфоксиде при различных температурах

Удельная и молярная электрическая проводимость растворов электролитов в нитробензоле при различных температурах

Удельная и эквивалентная электрическая проводимость растворов электролитов в муравьиной кислоте при

Удельная и эквивалентная электрическая проводимость растворов электролитов в пропиленкарбонате

Удельная и эквивалентная электрическая проводимость растворов электролитов в серной кислоте при

Удельная и эквивалентная электрическая проводимость растворов электролитов в уксусной кислоте при

Удельная электрическая проводимость насыщенных растворов солей в диметилсульфоксиде при

Удельная электрическая проводимость насыщенных растворов труднорастворимых электролитов при

Удельная электрическая проводимость растворов

Удельная электрическая проводимость растворов КС в интервале

Удельная электрическая проводимость растворов в ДД-диметилацетамиде при различных температурах

Удельная электрическая проводимость растворов органических кислот при

Удельная электрическая проводимость растворов электролитов в Д-метилацетамиде при

Удельная электрическая проводимость растворов электролитов в Д-метилацетамиде при различных температурах

Удельная электрическая проводимость растворов электролитов в ДД-диметилацетамиде при

Удельная электрическая проводимость растворов электролитов в ацетамиде

Удельная электрическая проводимость растворов электролитов в ацетоне при

Удельная электрическая проводимость растворов электролитов в ацетонитриле при различных температурах

Удельная электрическая проводимость растворов электролитов в бутан-1-оле при различных температурах

Удельная электрическая проводимость растворов электролитов в бутиролактоне

Удельная электрическая проводимость растворов электролитов в дихлорэтане

Удельная электрическая проводимость растворов электролитов в метиленхлориде

Удельная электрическая проводимость растворов электролитов в нитрометане

Удельная электрическая проводимость растворов электролитов в пиридине

Удельная электрическая проводимость растворов электролитов в пропиленкарбонате

Удельная электрическая проводимость растворов электролитов в тетрагидрофуране

Удельная электрическая проводимость растворов электролитов в этилацетате

Удельная электрическая проводимость стандартных растворов

Удельное электрическое сопротивление растворов хлорной кислоты

Удельное электрическое сопротивление растворов щелочей

Шереметьев, А. И. Клочков, А. П. Федотов. Электрические явления при перемешивании раствора полиметилметакрилата

ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ РАСТВОРОВ

Эквивалентная и удельная электрическая проводимость растворов солей в бутан-1-оле при

Эквивалентная и удельная электрическая проводимость растворов солей в метаноле

Эквивалентная и удельная электрическая проводимость растворов солей в этаноле

Эквивалентная и удельная электрическая проводимость растворов электролитов в метаноле при различных температурах

Эквивалентная и удельная электрическая проводимость растворов электролитов в нитробензоле при

Эквивалентная и удельная электрическая проводимость растворов электролитов в пиридине при

Эквивалентная электрическая проводимость ионов в водных растворах при

Эквивалентная электрическая проводимость ионов в растворах

Эквивалентная электрическая проводимость разбавленных растворов солей и неорганических кислот при

Эквивалентная электрическая проводимость растворов солей редкоземельных элементов при

Эквивалентная электрическая проводимость растворов электролитов в аммиаке при

Эквивалентная электрическая проводимость растворов электролитов в ацетоне при

Эквивалентная электрическая проводимость растворов электролитов в ацетофеноне

Эквивалентная электрическая проводимость растворов электролитов в метилэтилкетоне

Эквивалентная электрическая проводимость растворов электролитов в муравьиной кислоте при

Эквивалентная электрическая проводимость растворов электролитов в нитрометане

Эквивалентная электрическая проводимость растворов электролитов в циановодороде при

Электрическая проводимость Равновесие в растворах электролитов

Электрическая проводимость водных растворов

Электрическая проводимость комплексных соединений в растворах

Электрическая проводимость концентрированных растворов электролитов при

Электрическая проводимость неводных растворов

Электрическая проводимость неводных растворов электролитов

Электрическая проводимость растворов

Электрическая проводимость растворов и числа переноса

Электрическая проводимость растворов сильных электролитов

Электрическая проводимость растворов электролитов

Электрическая проводимость растворов электролитов. Кондуктометрия

Электрическая проводимость растворов электролитов. Электрофорез

Электрическая проводимость растворов. Закон разведения

Электрические свойства твердых растворов ферритов

Электрические, молекулярно-кинетические и оптические свойства растворов ВМС

Электрический потенциал разность на границе металл раствор

Электрического тока прохождение через растворы электролитов

Электролиты растворы, электрические свойств

Электропроводность разбавленных растворов при слабых электрических поля

Электрохимия Электрическая проводимость растворов



© 2024 chem21.info Реклама на сайте