Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой диффузная часть

Рис. 171. Строение двойного электрического слоя (/) на границе металл— раствор и распределение потенциала в ионной обкладке при различной концентрации раствора (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение потенциала в плотной и диффузной частях двойного слоя х — расстояние от поверхности металла Рис. 171. <a href="/info/72523">Строение двойного электрического слоя</a> (/) на границе металл— раствор и <a href="/info/511334">распределение потенциала</a> в <a href="/info/357904">ионной обкладке</a> при <a href="/info/1841315">различной</a> <a href="/info/2541">концентрации раствора</a> (//) а6 — плотная часть 6в — диффузная часть, ф — разность потенциалов между раствором и металлом 1)), 1)1 — падение <a href="/info/3387">потенциала</a> в плотной и <a href="/info/308048">диффузной частях двойного слоя</a> х — расстояние от поверхности металла

    Современная теория строения двойного электрического слоя основана на представлениях Штерна. Она объединяет две предыдущие теории. Согласно современной теории слой противо ионо состоит из двух частей (рис. П. 13). Одна часть находится в непосредственной близости к межфазной поверхности и образует слои Гельмгольца (адсорбционный слой) толщиной б не более диаметра гидратированных иоиов, его составляющих. Другая часть противоионов находится за слоем Гельмгольца, в диффузной части (диффузный слой Гуи с потенциалом ф ), толщина I которой может быть значительной и зависит от свойств и состава системы. Потенциал в диффузной части двойного электрического слоя не может зависеть линейно от расстояния, так как ионы в нем распределены неравномерно. В соответствии с принятыми представлениями иотенциал в слое Гельмгольца при увеличении расстояния от слоя потенциалопределяющих ионов сни- [c.54]

    Диффузионный — часть двойного электрического слоя, диффузный расположен за ним. [c.239]

    В. Электролиты, содержащие ионы, величина заряда которых отличается от заряда противоионов исходного двойного электрического слоя. Диффузная часть двойного электрического слоя в этом случае преимущественно образуется ионами с более высоким зарядом, и концентрации ионов с зарядами 2] и 22 в двойном слое связаны с их кон-дентрациями в объеме соотношением [c.207]

    При относительном перемещении фаз, из-за гидратации твердой поверхности и ионов, граница скольжения проходит на некотором расстоянии от твердой поверхности. В результате этого двойной электрический слой подразделяется на плотную (адсорбционную) и диффузную части (рис. 100). [c.330]

    Заряженная поверхность электрода вместе с прилегающим к электроду заряженным слоем раствора называется двойным электрическим слоем. Та часть двойного электрического слоя толщиной до, которая образуется поверхностью электрода с непосредственно прилегающими к ней ионами, называется плотной частью двойного электрического слоя. В этой части изменение нотенциала в зависимости от расстояния рассматривается как линейное. Скачок потенциала в плотной части двойного слоя обозначается буквой ф. Часть двойного электрического слоя, расположенная за плотной частью, называется диффузной. Изменение нотенциала в зависимости от расстояния от электрода в этой части слоя не линейно скачок потенциала в диффузном слое обозначается через [c.40]

    Толщина этой диффузной части двойного электрического слоя оценивается А. Н. Фрумкиным в чистой воде — до 1 мкм, для не очень низких концентраций растворов—в 10 —10 см, а в концентрированных растворах — в десятки или единицы ангстрем. [c.159]


    С увеличением концентрации электролита в растворе двойной электрический слой на границе металл — раствор сжимается, ионы приближаются к поверхности электрода и большая их часть из диффузного д. э. с. переходит в плотный д. э. с. При этом диффузный >))1-потенциал уменьшается, а скачок потенциала в плотном д. э. с. увеличивается. В растворах с концентрацией электролита (ионной силой) 0,1—1,0 моль л диффузный двойной силой и диффузный -ф -потен-циал практически равны нулю. [c.302]

    Теория образования двойного электрического слоя позволяет удовлетворительно объяснить известные явления электризации жидкости при ее движении относительно твердой фазы. Диффузная часть двойного электрического слоя увлекается потоком жидкости, перенося электрические заряды. При этом заряды переносятся в результате конвекции, электрической проводимости и диффузии. Однако влияние диффузионного переноса на электризацию существенно меньше первых двух видов переноса. [c.115]

    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    Если расстояние х отсчитывать от начала диффузной части двойного электрического слоя, то [c.57]

    С уменьшением толаины двойного электрического слоя (диффузной части) электрокинетический потенциал уменьшается, уменьшаются электростатические сшш отталкивания и одновременно возрастают силы межмолекулярного прияжения энергетический барьер снижается и наступает коагуляция. [c.33]

    Электрокинетич. явления использованы при создании преобразователей перепада давления, линейных и угловых ускорений. При заполнении орг. жидкостью (чаще всего ацетоном) капиллярной пористой перегородки из стекла, керав шки или др. диэлектрика на пов-сти капилляров возникает двойной электрический слой. Диффузная часть слоя благодаря тепловому движению находится в жвдкости и способна перемещаться вдоль пов-сти капилляров вместе с жидкостью. При наложении перепада давления на пористую перегородку электрич. зарад диффузной части двойного электрич. слоя в определенной степени увлекается движущейся жвдкостью и ионный ток фиксируется электродами, расположенными по обе стороны пористой перегородки. Приборы, основанные на электрокинетич. явлениях, отличаются от концентрационных Э. п. и. более высоким верхним пределом частотного диапазона (500 ги и выше), но при этом имеют и более высокое внутр. электрич. сопротивление (ок. 1 МОм). [c.461]

    ЭЛЕКТРОХЙМИЯ ПОЛУПРОВОДНИКОВ, изучает физ.-хим. процессы на фанице раздела полупроводник -электролит. Особенности электрохим. поведения полупроводников обуопоЕлены, во-первых, низкой концентрацией подвижных зарадов - носителей тока, во-вторых, наличием двух вццов носителей тока - электронов в зоне проводимости и дырок в валентной зоне. Из-за низкой концентрации носителей тока (напр., в чистом Ge это величина порадка 10 см , тогда как в металлах концентрация свободных электронов порадка 1(Я см" ) полупроводниковая обкладка двойного электрического слоя диффузна, подобно диффузной части двойного электрич. слоя в случае металлич. электрода, погруженного в разб. р-р электролита. Вследствие этого значит, часть межфазного скачка потенциала локализована в полупроводнике, а дифференц. емкость полупроводникового электрода по порядку величины ниже, чем металлич. электрода Напр., емкость электрода из Ge составляет неск. сотых мкФ/см , емкость металлич. электродов - десятки мкФ/см . [c.467]

    На рис. 39 графически показано соотношение между величиной термодинамического и электрокинетического потенциалов в зависимости от толщины двойного электрического слоя. Диффузное распределение зарядов дает кривые потенциалов, полого спадающие по мере удаления от поверхности частицы, кривая 1 — при большей толщине диффузного слоя (Д1), кривая 2 — при. меньшей его толщине (Дз). Термодинамический потенциал не зависит от толщины двойного электрического слоя, а -потенциал определяется ординатой пересечения кривых с границей скольжения, обозначенной пунктиром. Чем толще слой, тем выше значение Толщина диффузной части двойного слоя зависит влервом приближении от концентрации и валентности ионов дисперсионной среды. Таким образом, изменение концентрации электролита в суспензии может изменить величину С-потенциала. [c.79]


    Появление оксида на иоверхности металла изменяет строение двойного электрического слоя. В этом случае его уже нельзя представить простой моделью Штерна — Грэма, которая использовалась ири создании теории водородного перенапряжения. В этом случае, по Гэру и Ланге (1958 , к падению потенциала в гельмгольцевской и диффузной частях дво1И1ого слоя, учитываемых в модели Штерна Грэма, следует добавить падеиие потенциала в слое оксида (рис. [c.427]

    Вокруг отрицательно заряженной клетки микроорганизма имеется слой противоионов — катионов, компенсирующих этот заряд (рис. 41). Такая система зарядов и представляет собой двойной электрический слой (ДЭС). Часть из противоионов ДЭС находится на значительном расстоянии от поверхности клетки — это так называемый диффузный слой, другая часть непосредственно примыкает к этой новерхности и связана с нею настолько прочно, что не покидает ее при перемещении клетки в среде — это плотный или гельмгольцевский ёлой. В зависимости от условий внешней среды (pH, количество и природа солей и др.) ДЭС может быть размытым или уплотненным , т. е. противоионы плотного слоя могут покидать его и переходить в диффузный, или наоборот. Сумма зарядов плотного и диффузного слоев внешней обкладки двойного электрического слоя равна заряду внутренней обкладки ДЭС, т. е. истинному заряду клетки. [c.200]

    В дисперсных системах двойной электрический слой возникает на поверхности частиц. Частицу дисперсной фазы в гетерогенно-дисперсной системе вместе с двойны.м электрическим слоем называют мицеллой. Строение мицеллы можно показать гой же формулой, что и строение двойного электрического слоя. Внутреннюю часть мицеллы составляет агрегат основного вещества. На поверхности агрегата расположены потенциалопре-челяющие ионы. Агрегат вместе с потенциалопределяющими ионами составляет ядро мицеллы. Ядро с противоиоками плотной части двойного электрического слоя образуют гранулу. Гранулу окружают противоионы диффузного слоя.. Мице.тча в отличие от гранулы электронейтральна. [c.77]

    Согласно электростатической теории, коллоидная система представляет собой следующее. Вокруг частицы имеется двойной электрический слой, одна часть которого прочно связана с частицей. За этим слоем, благодаря электростатическим силам заряженной частицы, действующим отталкивающе на однозначно заряженные ионы и притягивающе на противоположно заряженные ионы, получается слой ионов, в котором будут преобладать ионы противоположного с частицей знака. Такому распределению ионов с противоположным зарядом препятствует температурное движение ионов, энергия которого приблизительно одного порядка с энергией кулоновских сил (сил электрического взаимодействия). Под действием двух этих сил образуется своего рода ионная атмосфера вокруг частицы, в которой будут преобладать ионы с зарядами, противоположными заряду частицы. Например, в случае отрицательно заряженной частицы AsaSs вблизи самой частицы будет находиться ярочный слой Н+-ионов, не уравновешивающий полностью ее заряда. За этим слоем диффузный слой Н+-ионов, [c.263]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Из уравнения (XX, 6) видно, что определяющей суммарную емкость двойного электрического слоя является меньшая из величин Сг и Сд. Емкость плотной части двойного слоя определяется размерами адсорбированных ионов и способностью их деформироваться под действием электрического поля. Поэтому при постоянной температуре Сг является функцией только заряда поверхности и не зависит от концентрации электролита. Обычно величины емкости плотного слоя лежат в пределах 20-4-40 мкф/см . В отли-чие 01 Сг, емкость диффузной части двойного слоя существенно зависит от концентрации электролита (уменьшается с разбавлением, а также с уменьшением заряда электрода). Если концентрация электролита высока, то емкость диффузной части двойного слои значительно превышает емкость слоя Гельмгольца. В этом случае [см. уравнение (XX, 6)] [c.539]

    Диффузная часть двойного электрического слоя наиболее лабильна и изменчива, Противоионы обмениваются на другие иоз1Ы того же знака. Повышение концентрацни раствора пр Шодит к вытеснению противононов нз диффузной в плотную часть двойного электрического слоя. Толщина двойного электрического слоя и величина -потенциала уменьшаются. При некоторой кот ,ентра-ции раствора (примерно 0,1 и.) все противоионы оказываются [c.331]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    Первый член правой части уравнения (535) представляет собой постоянную величину. Если в растворе кислоты имеется избыток постороннего электролита, то это приводит к сжатию и стабилизации диффузной части двойного электрического слоя, причем i onst. В этом случае, объединяя постоянные величины и полагая = 0,5, можно упростить уравнение (535)  [c.254]

    Строение двойного электрического слоя в отсутствие специфической адсорбции. Под строением двойного слоя понимают распределение зарядов в его ионной обкладке. Упрощенно ионную обкладку можно условно разделить на две части 1) плотную, или гельмголь-цевскую, образованную ионами, практически вплотную подошедшими к металлу 2) диффузную, созданную ионами, находящимися на расстояниях от металла, превышающих радиус сольватированного иона (рис. 171, /). Толщина плотной части.порядка 10 см, диффузной — 10 —10 см. Согласно закону электронейтральности [c.473]

    Штерн предложил р ассматривать двойной электрический слой состоящим из двух частей внутренней (плотный слой Гельмгольца) и внешней (диффузный слой). Это позволило использовать теорию Гуи — Чепмена для описания строения внешней части слоя, где можно пренебречь адсорбционными силами и размерами иоиов. Внутреннюю часть Штерн представил как адсорбционный мопоионный слой толщиной не менее двух радиусов ионов (см. рис. 11.13). Введенный Штерном потенциал часто называют штерновским. [c.60]

    Возможна поверхностная проводимость, обусловленная по-выщенной концентрацией заряженных частиц в диффузной части двойного электрического слоя сложных структурных образований и на границе раздела фаз. [c.62]

    При виеилних воздействиях на ССЕ (напрнмер, механических) возможен разрыв двойного электрического слоя и изменение баланса зарядов в ССЕ в результате изменения геометрических размеров ССЕ. Плоскость скольжения обычно проходит по диффузному слою, и часть его компонентов переходит в дисперсионную среду. В результате возникает разность потенциалов между подвижной (диффузной) и неподвижной (адсорбционной) частью двойного электрического слоя, которую принято называть электрокинетическим (дзета) потенциалом — . Значение -потенциала зависит от отношения hjr ССЕ. При hjr- O - 0, а при /i/r- oo значение -потенцнала увеличивается. Иными словами, значение -потенцнала зависит от внешних возде11-ствий и может ими регулироваться в значительных пределах. [c.159]

    Это уравиенне после двойного интегрирования позволяет получить соотношение, выражающее закон изменения поверхностного потенциала от расстояния в диффузной части двойного электрического слоя и от свойств раствора. Чтобы в полной мере представлять возможности соотнонюння (П. 87), лехсащего в основе теории двойного электрического слоя, необходимо напомнить основные допущения и предположения, сделанные Гун и Чепменом при его выводе двойной электрический слой является плоским, диэлектрическая проницаемость не зависит от расстояния х, ноны представляют собой точечные заряды (т. е. не имеют объема), при переводе противоионов из объема раствора в двойной электрический слой совершается работа только против электростатических сил. [c.56]

    Поскольку показатель экспоненты в уравпенип Гуи — Чепмена является безразмерной величиной, а х и 5 измеряются в единицах длины, то X должна выражаться в единицах обратной длины. Величину А, = /у. называют то 1Ш,иной диффузной части двойного электрического слоя, или просто толщиной диффузного слоя (пр1[ малых ф). При л —б = Л— 1/>с уравнение Гун —Чеимена переходит в соотноизение [c.58]

    Штерн попытался учесть влияние специфической адсорбции на электрический потенциал, обусловленной действием ковалентных сил дополнительно к электростатическим силам. Так как радиус действия сил такой адсорбции соизмерим с размером ионов, это дает основание учитывать их только для иоиов, входящих в плотный слой Гельмгольца. Как видно из рис. И. 13, плотность поверхностного заряда противоионов можно разделить на две части плотность заряда обусловленного монопонным слоем, представляющим собой слой Гельмгольца, и плотность заряда диффузного слоя Гуи. Общая поверхностная плотность заряда двойного электрического слоя равна сумме поверхностиых плотностей зарядов плотного и диффузного слоев  [c.60]

    Рассмотрим систему водный раствор — поверхность иодида серебра. При избытке в растворе ионов серебра (например, при добав.пеини нитрата серебра) последние являются иотенциалоире-деляющими. В роли иротивононов выступают нитрат-ионы, часть которых будет находиться в плотном слое, а другая часть в диффузном слое. Для такой системы формул) двойного электрического слоя можно записать следующим образом  [c.62]


Смотреть страницы где упоминается термин Двойной электрический слой диффузная часть: [c.63]    [c.225]    [c.160]    [c.274]    [c.353]    [c.537]    [c.538]    [c.539]    [c.330]    [c.332]    [c.334]    [c.473]    [c.473]    [c.474]    [c.55]    [c.217]   
Коллоидная химия 1982 (1982) -- [ c.178 , c.180 ]

Введение в электрохимическую кинетику 1983 (1983) -- [ c.107 , c.110 ]

Основы современного электрохимического анализа (2003) -- [ c.128 ]

Электрохимическая кинетика (1967) -- [ c.96 , c.97 , c.100 ]

Теоретическая электрохимия (1965) -- [ c.269 , c.274 , c.276 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.272 ]

Теоретическая электрохимия (1959) -- [ c.211 , c.343 , c.345 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.211 , c.343 , c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический диффузный

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой диффузный

Двойной электрический слой протяженность диффузной части

Диффузная часть двойного электрического слоя. Уравнение Пуассона—Больцмана

Диффузный слой



© 2025 chem21.info Реклама на сайте