Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртутной капли метод

    Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографического максимума кислорода. Полярографический максимум получают на фоне 0,1 н. раствора К1 в бинарном растворителе бензол—метанол (1 3). В смеси бензол—метанол растворяется только ограниченное число молекул полистирола определенной молекулярной массы, остальная часть полимера выпадает в осадок. Растворенный полимер, адсорбируясь на поверхности ртути капельного электрода, уменьшает полярографический максимум. Согласно методике в электролитическую ячейку при измерениях вводят одинаковое количество полимера, поэтому при переходе от образцов с большей молекулярной массой к образцам с меньшей молекулярной массой в осадок выпадает все меньшая часть полимера. При этом концентрация полимера в растворе увеличивается, и степень подавления максимума возрастает. [c.238]


    Введение быстрой развертки потенциала с регистрацией полярограммы на каждой отдельной ртутной капле создает новые условия протекания электродных процессов и аналитические возможности. Это выделяет такие измерения в самостоятельный раздел полярографического метода, называемый вольтамперометрия с линейной разверткой потенциала или со стационарным электродом. Последнее название подчеркивает, что теория приложима к описанию твердых, в том числе и стационарных электродов, и в измерениях ими можно заменять ртутный капающий электрод. [c.287]

    Практи ческий интерес представляет нестационарная диффузия к электроду в виде растущей ртутной капли, вытекающей из капилляра. Метод определения зависимости тока от потенциала на капельном ртутном электроде получил название полярографического метода. Этот метод широко применяется и для исследования электродных процессов, и для качественного и количественного анализа растворов. Он был предложен в 1922 г. Я. Гейровским. В дальнейшем этот метод получил очень широкое развитие, появились многочисленные его разновидности. Схема полярографической установки пока-зана на рис. 95. [c.179]

    В методах вольтамперометрии с использованием стационарных электродов исследуемый раствор не перемешивается, а сам электрод находится в состоянии покоя, так что определяемое вещество доставляется к поверхности электрода только за счет диффузии. В случае РКЭ наряду с диффузионным переносом деполяризатора может иметь место конвективный массоперенос, которого нельзя избежать из-за роста ртутной капли в направлении раствора. Выше было показано, что конвективная диффузия определяемого вещества к электроду играет весьма существенную роль, причем скорость массопереноса можно запрограммировать. Для этого применяют электроды разной формы, вращающиеся в анализируемом растворе с постоянной скоростью. Иногда электрод помещают в равномерно перемешиваемый раствор. [c.397]

    Максимумы 2-го рода. В некоторых случаях (большая концентрация сопутствующего электролита, быстрое вытекание ртути из капилляра и т. д.) даже тогда, когда условия в растворе для капли таковы, что неравномерная поляризация ее отдельных мест устранена и максимумы 1-го рода возникнуть не могут, наблюдается предельный ток, значительно превышающий диффузионный причины этого выяснены Крюковой (см. выше). Что касается применения полярографических максимумов 2-го рода в аналитической практике, то это вполне возможно, так как зависимость между концентрацией деполяризатора и силой тока в присутствии большого избытка постороннего электролита выражается прямой линией, как и при обычном диффузионном токе. Необходимо лишь поддерживать строго постоянной скорость и направление движения ртути. На основании явления торможения тангенциальных движений поверхности ртутной капли адсорбированными органическими молекулами Крюкова разработала оригинальный метод определения органических веществ в воде [322]. Метод состоит в том, что для обеспечения прохождения в цепи тока, величина которого зависит от эффекта торможения тангенциальных движений поверхности капли ртути, а значит и от присутствия ПАВ в растворе, принято проводить электрохимическое восстановление кислорода, присутствующего в растворе (в исследуемой, например, воде). При этом, с одной стороны сила тока максимума 2-го рода изменяется линейно с содержанием самого кислорода с другой стороны, поскольку кислород восстанавливается при потенциалах менее отрицательных, чем происходит адсорбция большинства ПАВ, присутствие последних в растворе всегда хорошо проявляется. При этом степень загрязненности воды Крюкова предлагает выражать в виде суммы A + g р. Здесь [c.226]


    Иногда для осциллополярографических измерений применяют электрод в виде периодически сменяемой ртутной капли. Для этого устье капилляра закрывают иглой из нержавеющей стали. Игла прикреплена к железной пластинке, над которой расположен электромагнит. Включая электромагнит при помощи реле на определенное время, получают на конце капилляра каплю со строго воспроизводимыми размерами. При измерениях на висячей капле можно существенно уменьшить скорость наложения потенциала, что позволяет повысить чувствительность осциллографической поляро- графии. Кроме того, висячую кап- " лю применяют в так называемой полярографии с накоплением, ко-торая используется для определе- (-Г ния ультрамалых количеств катионов металлов в растворах. Для этого висячей капли подбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы, а затем линейно смещают потенциал капли в анодную сторону и измеряют ток анодного растворения амальгамы. Поскольку время предварительного электролиза на висячей капле можно в принципе выбрать сколь угодно большим, то можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода или других его разновидностей. [c.207]

    Практически важной является нестационарная диффузия к электроду в виде растущей ртутной капли, вытекающей из капилляра. Метод определения зависимости тока от потенциала на капельном ртутном электроде получил название полярографического метода. Этот метод широко применяется и для исследования электродных процессов, и для качественного и количественного анализа растворов. Он был предложен в 1922 г. Я. Гейровским. В дальнейшем этот метод [c.190]

    Метод основан на свойстве растворенных поверхностно-активных макромолекул полистирола адсорбироваться на поверхности ртутной капли и уменьшать величину полярографических максимумов. Высокая чувствительность полярографических максимумов (при концентрации полимера в растворе 1—2% высота максимума снижается на 25—30%) позволяет качественно и количественно изучать растворимость полимеров. [c.240]

    Основой полярографического метода является ртутный капельный электрод (рис. 75). Он состоит из длинного узкого капилляра, на конце которого периодически образуются и отрываются небольшие ртутные капли (диаметром около 1—2 мм). Поляризация капли осуществляется относительно большого ртутного электрода на дне ячейки, а потенциал измеряется по отношению к постоянному электроду сравнения (обычно это нормальный или насыщенный каломельный электрод). Ток в цепи капельного электрода оказывается функцией времени. Поэтому при измерениях ток усредняют по периоду капанья электрода. Зависимость среднего тока / от потенциала Е называется поляро- [c.179]

    Разработаны различные способы приготовления электрода в виде капли, висящей на конце стеклянного капилляра, либо подвешенной на конце золотой или платиновой амальгамированных проволочек. Недостатком последнего метода является то, что растворение металлов в ртути может привести к ее загрязнению. Применяются также капельные электроды, в виде сидящей ртутной капли, которую можно получить, используя и-образный капилляр. [c.18]

    Современные экспериментальные методы исследования и особенно изучение электрокапиллярных явлений могут дать представление о строении двойного электрического слоя. Еще в начале прошлого века было замечено, что форма поверхности ртутной капли, находящейся в растворе, зависит от сообщенного ей заряда. Если с поверхности ртути укрепленной иглой периодически снимать заряд, то капля ртути начнет совершать сложные движения. Это явление — ртутное сердце можно объяснить, если предположить, что поверхностное натяжение ртути зависит от возникновения двойного электрического слоя на металле и, следовательно, от скачка потенциала на границе фаз ртуть — раствор. Наблюдать такую зависимость очень удобно с помощью капиллярного электрометра (рис. 34), который состоит из двух ртутных электродов, сообщающихся через разбавленный раствор серной кислоты. Один из электродов — анод (ртуть в каломельном полуэлементе 4 обладает большой поверхностью и при прохождении тока практически не поляризуется), другой же электрод находится в трубке, заканчивающейся капилляром, и имеет весьма ограниченную поверхность (ртуть в капле), которая меняется [c.204]

    Скорость вытекания ртути из капилляра может быть найдена различными способами. Строго соответствующую условиям опыта среднюю скорость т находят путем определения массы вытекающей за время опыта ртути . Вполне удовлетворительным во многих случаях, в частности при выполнении учебных работ, является следующий метод определения т в условиях выкапывания ртути из капилляра на воздухе. Одновременно с отрывом ртутной капли включают секундомер и до отрыва последующей капли под капилляр подставляют чистый и высушенный небольшой бюкс. Вытекшую из капилляра в течение 15—20 мин ртуть взвешивают, Полученную массу (в мг) делят на показания секундомера (в с). [c.171]


    Из этого выражения видно, что скорость перемешиваю раствора - важный параметр, который всегда следует, учитывать. Для повышения эффективности электролиза ее увеличивают до тех пор, пока ртутная капля еще удерживается на висящем ртутном капельном электроде или пока не наступит нежелательная кавитация раствора. Увеличение поверхности электрода также можно использовать для оптимизации процесса осаждения металла. Поскольку процесс растворения концентрата выполняют на том же электроде, что и процесс электролиза, в инверсионной вольтамперометрии не применяют электроды с большой поверхностью. Площадь поверхности электрода в этом методе близка к таковой в обычном полярографическом или вольтамперометрическом эксперименте. [c.420]

    За последние годы успешно развивается метод амальгамной полярографии с накоплением , позволяющий определить некоторые соединения в концентрации порядка 10 —10 моль/л. Он основан на накоплении определяемого вещества в ртутной капле при катодной поляризации с последующим снятием анодной полярограммы. Ртутная капля в этом случае применяется неподвижная — висячего или иного типа. [c.90]

    Для стабилизации периода капания и его синхронизации с работой измерительной аппаратуры проводят принудительное стряхивание ртутной капли с постоянным периодом с помощью специального электромеханического устройства, приводимого в действие короткими импульсами тока от измерительного прибора. Очевидно, что задаваемый указанным образом период капания будет несколько меньше наименьшего периода естественного капания данного РКЭ. Недостаток такого метода синхронизации состоит в том, что не используется наиболее выгодное время жизни капли перед ее естественным отрывом, когда она имеет наибольшую по величине и сравнительно мало изменяющуюся площадь поверхности. [c.85]

    Микроскопический метод определения. Исторический интерес представляет микроскопический метод определения ртути, основанный на восстановлении ее до металла из раствора солей или на отгонке металлической ртути и определении диаметра получившейся ртутной капли под микроскопом [503, 888, 1091, 1255]. Расчет количества ртути проводили по формуле / = 1/6 я d gp, где d — диаметр капли g — ускорение силы тяжести р — плотность. Этот метод был применен для определения 0,04—10 мке Hg. [c.78]

    В вопросах, рассмотренных ранее, применение полярографического метода в полимерной химии основывалось на способности ртутного капающего электрода (как нуклеофильного реагента) взаимодействовать с химически активными электронофильными группами исследуемых веществ. Это позволило, исходя из неодинаковой реакционной способности различных соединений, определять их природу, делать заключение об их количественных соотношениях в различных системах, используемых в полимерной химии, и т. д. Были также найдены возможности применения полярографического метода и для исследования некоторых физических свойств полимерных молекул. Это направление основано на знании гидродинамических свойств ртутной капли в сочетании с ее электрохимическими и электро- [c.223]

    Все электрохимические явления происходят на поверхности ртутной капли и вблизи ее поверхности. В методе полярографии основным препятствием для разрядки частиц на ртутном катоде является диффузионный слой вблизи катода, который должны преодолеть катодно-активные частицы вещества (ионы или молекулы). [c.293]

    В электролитическую ячейку с выдавливаемой каплей ртути (рис. 22) помещают 25 мл исследуемого раствора, 0,1М по КС1 (очищенного от тяжелых металлов хроматографическим путем) и продувают азот (освобожденный от кислорода) 30 мин. Затем поворотом винта выдавливают капли ртути первые две сбрасывают, третью оставляют для работы. На электроды ячейки подают напряжение, на 0,2 в большее, чем определяемого иона (для С(1 — 0,8 в) и ведут электролитическое обогащение ртутной капли кадмием при перемешивании раствора током азота в течение 30 мин. Затем перемешивание прекращают и спустя 1—2 мин., после успокоения раствора, с постоянной скоростью (400 мв/мин). понижают напряжение до —0,2 в, регистрируя при этом кривую анодного растворения амальгамы кадмия его концентрацию рассчитывают по методу добавок. [c.109]

    Для определения ультрамикроколичеств галлия в материалах высокой чистоты все большее значение приобретает метод амальгамной полярографии на стационарной ртутной капле с линейно меняющимся потенциалом [449]. [c.175]

    В этом методе поляризующее постоянное напряжение, изменяющееся по линейному закону, подают в отличие от классической полярографии с очень высокой скоростью (0,1—1 В/с). Развертку потенциала от некоторой начальной величины включают в определенный момент жизни капли. Если уравнение, связывающее величину поверхности ртутной капли со [c.171]

    Описаны косвенные полярографические методы определения малых количеств ртути, основанные на полярографировании сульфида на покояш ейся ртутной капле [476], на полярографировании кадмия, количественно вытесняемого ртутью из сульфида кадмия [258], органических тиосоединений дитизона, тиомочевины, тиоамида, 2-меркаптобензтиазола и тиооксамида [477] после осаждения ртути указанными реагентами. Этим методом можно определить ртуть при концентрациях 10" —10 М, однако более воспроизводимые результаты получаются в области концентраций 10 —10 М [476]. Полярографическому определению ртути в органических веществах посвящены работы [154, 552, 597, 732, 788]. [c.99]

    Весьма ценным дополнением к исследованиям на ртутном капельном электроде служат измерения с электродом в виде стационарно висящей капли ртути. Такой электрод предоставляет новые возможности как для теоретических исследований (изучение продуктов электрохимических процессов и нестабильных радикалов, образование интерметаллических соединений металлов в ртути и т. д.), так и для практических целей, особенно для так называемой анодной растворяющей полярографии. В этом методе анализируемый металл сначала концентрируется в ртутной капле путем предварительного электролиза в течение некоторого времени из очень разбавленных растворов, а затем сравнительно быстро растворяется при анодной поляризации образовавшейся амальгамы с регистрацией анодного тока. Катионы металлов, образующих амальгамы со ртутью, могут быть определены этим способом даже при концентрациях ниже 10 М. [c.36]

    Амперометрическое титрование имеет более широкие возможности, чем полярография. Необходимым условием полярографических определений является способность определяемого иона восстанавливаться или окисляться на индикаторном электроде. Если концентрация этого иона мала, то регистрируемый ток также будет малым, что отразится на точности определения высоты волны. Отсюда необходимость различных усовершенствований полярографической аппаратуры или разработки методов, позволяющих накапливать определяемый ион в ртутной капле (метод АПН) или на твердом электроде (метод инверсионной вольтамперометрии твердых фаз). Между тем амперометрическсе титрование позволяет определять практически любой элемент, поскольку при таком титровании можно пользоваться электродной реакцией не только определяемого иона, но и титранта. Подавляющее большинство современных методов амперометрического титрования и основывается как раз на электрохимической активности титранта, поскольку это позволяет значительно увеличивать чувствительность определений. Кроме того, в амперометрическом титровании широко применяется не только и не столько ртутный капельный электрод, сколько твердые электроды — платина, графит, золото, тантал. Они позволяют пользоваться анодными и катодными процессами, протекающими при высоких положительных потенциалах индикаторного электрода. [c.273]

    Удержать на копчике капилляра ртутную каплю постоянных размеров для инверсионной вольтамперометрии практически невозможно. Для образования капли в этом методе используют платиновую проволочку, впаянную в стекляш1ую трубку, на которой формируют каплю. [c.292]

    Мышьяк отгоняют в виде бромида, галлий экстрагируют диэтиловым эфиром из солянокислого раствора и определяют методом осцнллополярографин Амальгамная полярография с накоплением на фоне солей мышьяковой кислоты Мышьяк отгоняют в виде бромида, галлий экстрагируют эфиром из 6—7 N НС1 и определяют методом инверсионной вольтамперометрии на стационарной ртутной капле или электроде из угольной пасты Амальгамная полярография с накоплением солянокислый фон [c.199]

    Измерение а жидких электродов (их пограничное натяжение) может быть выполнено несколькими методами. Первый метод основан на изучении формы стационарной капли жидкого металла (ртути), лежащей, например, на гладкой горизонтальной поверхности (рис. 10). Под действием сил пограничного натяжения капля стремится приобрести сфе-Рис. 10. Форма стацио- рическую форму, так как из всех тел с рав-нарнои ртутной капли объемом сфера имеет наименьшую по- [c.36]

    Вольтамперометрия с быстрой (линейном) разверткой потенциала. В этом методе в отличие от классической полярографии скорость изменения потенциала составляет 50—100 мВ/с, и запись вольтам-перной кривой продолжается около 1 мин равновесное состояние на электроде не достигается, для теоретического описания процесса нельзя использовать уравнение Нернста. В этом методе время развертки синхронизировано с периодом капания, т. е. развертка должна начинаться в определенный и точно известный момент после начала роста капли, которая не должна падать до того, как закончится развертка. За время развертки рост ртутной капли должен быть ничтожно малым. Скорость изменения площади поверхности капли минимальна в конце жизни капли, поэтому развертку начинают в поздний период жизни капли, например через 2—3 с после начала ее роста. Для измерения тока применяют либо осциллограф, либо другое устройство, позволяющее фиксировать быстрое изменение тока. [c.500]

    В полярографическом методе применяется ртутный капельный электрод (рис. Vni.6). Он состоит из длинного узкого капилляра на конце которого периодически образуются и отрываются небольшие ртутные капли (диаметром около 1—2 мм). Поляризация капли осуществляется относительно большого ртутного электрода на дне ячейки, а потенциал измеряется по отношению к постоянному электроду сравнения (обычно это нормальный или насыщенный каломельный электрод). Ток в цепи капельного электрода оказывается функцией времени. Поэтому при измерениях ток усредняют по периоду капанья электрода. Зависимость среднего тока I от потенциала Е называется п о л я р о г р а м м о й. Полярографический метод был предложен в 1922 г. Я- Гейровским. В дальнейшем этот метод многократно видоизменялся и получил очень широкое распространение. [c.212]

    Полярографический метод анализа был предложен в 1922 г. чешским ученым Ярославом Гейровским, который установил, что концентрация и природа восстанавливающихся или окисляющихся на ртутном капельном электроде веществ могут быть определены по кривым потенциал — плотность тока, т. е. по полярограммам, полученным с помощью двух электродов, один из которых очень малого размера (ртутная капля) и подвержев весьма сильной поляризации.  [c.284]

    Стационарные ртутные и амальгамные электроды. Электроды со стационарной ртутной каплей и амальгамные пленочные электроды, как уже указывалось, применяются в методе ИП. Известны различные конструкции электродов со стационарной ртутной каплей. Капля может лежать в чашечке на вертикально расположенном капилляре или подвешиваться на металлический контакт. В качестве контакта применяют платиновую, серебряную или золотую проволоку обычно диаметром 0,2—0,5 мм, впаянную в стеклянную трубку и выступающую из нее на 0,3—0,5 мм. Стационарную каплю на металлическом контакте можно получить электролитическим осаждением ртути из подкисленных насыщенных раствороц солей окисной или закисной ртути. [c.196]

    Высокой чувствительностью определения Sb (2-10 %, = = 0,10-v-0,25) в германии и тетрахлориде германия характеризуется полярографический метод, включающий отгонку Ge в виде Ge l4, концентрирование Sb на электроде в форме висящей ртутной капли и регистрацию пика анодного растворения Sb при —0,105 в на фоне 0,2 М H l [134]. При определении Sb (а также РЬ, Bi и d) в GeBr4 рекомендован метод, включающий испарение GeBr4, электролитическое выделение определяемых примесей и регистрацию пиков их анодного растворения [105]. При использовании [c.128]

    Предложенный Баркером (1956) метод инверсионной полярографии (ИП) в литературе называется по-разному полярография анодного растворения, анодная вольтамперометрия при непрерывно изменяющемся потенциале, анодно-окислительная вольтамперометрия, метод висящей ртутной капли, обратная полярография с накоплением веществ на стационарной -ртутной апле, пленочная полярография, амальгамная полярография и т, п., что вносит большую путаницу. Однако наиболее общим является термин инверсионная полярография. [c.204]

    К этому методу концентрирования относятся и другие работы (Ю. Д. Систер, В. С. Михайлов с сотрудниками и т. д.), в которых использовался эффект образования пленок на поверхности электрода с последующими их электрохимическими превращениями. В частности, такая методика с предварительным анодным накоплением была применена для определения ферба-ма (диэтилдитиокарбамата Ре ) при концентрациях его до 6- 10 М (Сауберг), а также для определения остаточных количеств цинеба (цинковая соль этиленбисдитиокарбаминовой кислоты) и поликарбацина на листьях. При наложении потенциала —0,4 В на растущей ртутной капле происходит накопление соединения в виде нерастворимой соли, а за 1 с до отрыва капли подается катодный импульс со скоростью 1,0 В/с. Чувствительность определения повышается в 250 раз. [c.80]

    Методом циклической вольтамперометрин на висящей ртутной капле растворов нитрозо-, азокси- и азобензолов в ДМФА [c.310]

    При копцептрировапии же на ртутной капле заметная часть металла диффундирует от новерхности в глубь канли и не участвует в процессе анодного растворения. Метод инверсионной вольтамнерометрии пригоден для определения нескольких веществ при совместном нрисутствии. В этом случае электролиз ведут нри нотенциале предельного тока наиболее трудно восстанавливающегося вещества. При правильном выборе фонового электролита на инверсионной вольтамперограмме можно наблюдать раздельные пики комнонентов смеси. Для примера на рис. 91 приведена анодная инверсионная [c.185]

    Для определения малых содержаний ряда примесей в мышьяке часто используются полярографические методы. Описано [163] определение Си и РЬ в мышьяке высокой чистоты методом амальгамной полярографии на стационарной ртутной капле. Для определения РЬ предложен метод полярографии с анодным растворением [997]. Для определения малых количеств Те в мышьяке и его соединениях рекомендуется пульсполярографи-ческий метод [31]. [c.190]

    В основу предложенного [300] метода положено свойство ПАВ, адсорбирующихся на поверхности ртутной капли капающего электрода, снижать величину полярографических максимумов (см. выше). При изучении степени растворимости полимеров полярографическим методом исследуется действие растворов, в которых испытываются образцы полимеров. Степень растворимости определяется по изменению высоты полярографического максимума, которое обусловливается адсорбцией растворенных молекул полимера и зависит от концентрации последних в растворе. Полярографический метод более прост и удобен для исследований, чем, например, гравиметрический, с которым сравнивали полярографические результаты, особенно для малорастворимых полимеров. Незначительное уменьшение массы образцов, почти неуловимое для гравиметричес- [c.233]

    Метод изотопного обмена между металлической ртутью и раствором применен для выделения изотопа и из облученных материалов [690]. Выделяли изотоп при контакте 4 мл раствора с каплей ртути (100—500 мкл) в течение 3 мин. При этом радиоактивная ртуть отделялась от других радиоактивных элементов, кроме Р(1, 1г, Ag и Аи. Ионы Р(1(П) и 1г(1У) восстанавливаются ртутью, но не образуют амальгамы и остатся на поверхности ртутной капли. 1 Аи(1П) и серебро Ag(I) восстанавливаются ртутью и переходят в ртутную каплю. [c.136]

    При значениях приложенного потенциала, недостаточных для разряда определяемых ионов, сила тока возрастает по мере увеличения напряжения. Остаточный ток включает фарадеевский ток / , возникающий за счет электроразряда примесей, имеющихся в растворе, и емкостный ток 1с, обусловленный емкостью двойного электрического слоя на свежеобразующейся поверхности ртутной капли (вютад 1с в величину остаточного тока обычно значительно превышает /ф). Остаточный ток ограничивает предельную чувствительность метода. Как только потенциал разряда определяемого иона достигнут, начинается электрохимическая реакция, и сила тока резко возрастает. При этом в приэлектродном слое наблюдается снижение концентрации элекгрохимическтг активного вещества. При дальнейшем увеличении напряжения на ячейке сила тока достигает своего предельного значения потому, что концентрация в прголектродном слое становится практически равной нулю. Такая кривая носит название полярографическая волна . [c.740]

    Наиболее радикальный способ улучшения соотношения фарадеевский ток - емкостный ток реализуется в методе инверсионной вольтамперометрии. Существенное (многократное) увеличение фарадеевского тока происходит за счет электроконцентрирования определяемых компонентов раствора на поверхности или в объеме (в случае стационарной ртутной капли или амальгамного покрытия) индикаторного электрода (см. п. 6.5). [c.746]


Смотреть страницы где упоминается термин Ртутной капли метод: [c.204]    [c.301]    [c.52]    [c.348]    [c.50]   
Методы измерения в электрохимии Том1 (1977) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Капли

ртутный



© 2025 chem21.info Реклама на сайте