Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы по иону металла

Рис. Д.63. Типичная кривая комплексонометрического титрования 0,1 н. раствора иона металла (/Се=10 ). Рис. Д.63. Типичная <a href="/info/10361">кривая комплексонометрического титрования</a> 0,1 н. <a href="/info/6054">раствора иона</a> металла (/Се=10 ).

    В приведенное выше уравнение не входит концентрация в растворе ионов металла, что соответствует экспериментальным результатам реакция является автокаталитической. Была также установлена определенная зависимость продолжительности индукционного периода реакции от содержания катализатора в интервале от 0,1-10 до 0,1 10 вес. о. [c.161]

    Ркс. 7, Схематическое изображение гидратации и перехода в раствор ионов металла (линия а6 показывает поверхность металла) [c.16]

    Концентрационная поляризация. Из-за недостаточно быстрого отвода перешедших в раствор ионов металла повышается концентрация этих ионов в прианодной зоне. Более высокая концентрация ионов металла у поверхности анода, чем в растворе, объясняется замедленностью диффузии ионов металла. [c.34]

    Процесс ЭК-Ф может протекать при использовании как растворимых (железо, алюминий и т. д.), так и нерастворимых (платина, графит, титан и др.) анодов [10, 14]. В первом случае при малых напряженностях происходит преимущественное выделение в раствор ионов металла анодов, обеспечивающих коагуляцию загрязнений. Во втором случае коагуляция осуществляется только за счет силового действия электрического поля. [c.61]

    Комплексные соединения имеют сложный состав. В них выделяют центральный атом (комплексообразователь) и связанные с ним лиганды (заряженные или нейтральные неорганические или органические частицы, т. е. ионы или молекулы). Для аналитических целей в общем виде реакцию комплексообразования можно представить следующим образом. В растворе ионы металла соль-ватированы, т. е. координируют вокруг себя молекулы растворителя, образуя в случае воды аквакомплексы М(Н20) + (Ы— координационное число комплексообразователя). При введении в раствор лигандов (Ь) веществ, способных образовывать комплекс, происходит последовательное вытеснение молекул воды из внутренней координационной сферы и замещение их лигандами  [c.65]

    К сожалению, в большинстве случаев исследователи определяют только pH начала осаждения. Начало осаждения соответствует образованию первых видимых зерен осадка, когда концентрация ионов металла в растворе довольно велика. Между тем для количественного анализа большое значение имеет pH практически полного осаждения, когда концентрация остающихся в растворе ионов металла не превышает величины 1-10 г-ион л. Вследствие названных особенностей гидроокисей, а также вследствие явлений адсорбции, соответствующее значение pH нельзя с достаточной точностью вычислить из произведения растворимости соответствующих осадков. [c.95]


    Обратное титрование. К титруемому раствору иона металла добавляют точно измеренный избыток стандартного раствора комплексона, непрореагировавший остаток которого титруют раствором Мд(П) или 2п(И). [c.188]

    Мр, метастабильная. Электрод, состоящий из модификации М обладает повышенным запасом свободной энергии и поэтому отдает в раствор ионы металла [c.433]

    Кислые соли при растворении в воде дают в раствор ионы металла, водорода и анионы кислот, поэтому для них характерны свойства не только солей, но и кислот  [c.255]

    Кислые соли слабых кислот обычно дают в растворах ионы металла и кислые анионы кислот, которые в растворе подчиняются обычным законам диссоциации, а при реакциях — законам химического равновесия  [c.255]

    Если электроды изготовлены из металла, способного окисляться при том напряжении, при котором проводят электролиз, ионы из раствора на аноде не окисляются. Источник тока полз ает электроны от атомов металла, из которых состоит анод. В результате атомы металла, теряя электроны, из анода переходят в виде ионов в раствор анод растворяется. Ионы металла, перешедшие в раствор, притягиваются к катоду и восстанавливаются на нем. На катоде происходит отложение металла, принесенного с анода. Подобная разновидность электролиза называется электролизом с растворимым анодом. [c.255]

    Загрязняющие раствор ионы металлов часто осаждают в виде гидроксидов. Твердый гидроксид МеОН находится в равновесии с недиссоциированными молекулами и ионами  [c.256]

    Если катионит в Ме -форме Кг,Ме (где — заряд иона Ме ) обменивается с находящимися в растворе ионами металла (где 2, — заряд иона и этот обмен не сопровождается другими про- [c.305]

    Электролиз используют также для очистки некоторых металлов. Из очищаемого металла изготавливают анод. При электролизе анод растворяется, ионы металла переходят в раствор, а на катоде они осаждаются. Так получаются электролитически чистые металлы медь, серебро, железо, никель, свинец и многие другие. [c.168]

    Таким образом, в состоянии равновесия фазы заряжаются разноименно и возникает двойной электрический слой. Это явление оказывается общим для металлов, полупроводников и диэлектриков и подробно рассматривается в первом случае (металл — раствор ионов металла) в курсах электрохимии. [c.179]

    При анодной поляризации потенциал электрода смещается в положительную сторону. Поэтому скорость перехода н раствор ионов металла ускоряется, а обратная реакция разряда ионов из раствора будет замедлена. Результирующий ток анодного направления [c.165]

    Жоба) или метод молярных отношений. Метод изомолярных серий состоит в том,что готовят растворы с переменным м/ L при i м - L = onst. При исследовании комплексов слабых кислот нужно поддерживать также постоянство pH. Если Ом и Оь — оптическая плотность растворов иона металла и лиганда соответственно, то оптическая плотность их смеси при отсутствии комплексообразования (Оадд) была бы равна х01+( —х)01 . Через х здесь обозначено отношение си сгл + С] ). Разность реально измеренной оптической плотности О и Оадд называется отклонением от аддитивности А0 = 0—Оа я- Значение х ( —х). соответствующее экстремуму кривой АО — состав, равно отношению коэффициентов Р и а в доминирующем комплексе М Ец (рис. 7.5). Если этот ком плекс одноядерный, то х/( 1—л ) равно в формуле МЬ . Метод ма ло пригоден для определения состава комплексов с 3<п<5, поскольку значения х, соответствующие этим п, бли )ки  [c.363]

    При этом следует различать случаи, когда анодный продукт хорошо растворим и когда на аноде образуются нерастворимые соединения в виде гидроокисей, основных или нейтральных солей. Переходя в раствор, ион металла либо вступает в связь с молекулами растворителя, либо образует комплексные ионы. Наконец, нужно иметь в виду возможность повышения положительной валентности металлических ионов (соответственно понижения отрицательной валентности комплексных анионов). Если же потенциал анода достигает высоких положительных значений, то ко всем перечисленным направлениям анодных реакций добавляется окисление воды с выделением кислорода. На основании сказанного можно в следующем виде представить классификацию анодных процессов. [c.194]

    Характер ионов, образующихся при диссоциации разных электролитов, естественно, должен быть различным. В молекулах солей диссоциация всегда приводит к образованию катионов металла и анионов кислотного остатка. Поэтому соли могут быть определены как соединения, дающие в водном растворе ионы металла и кислотного остатка. Примеры  [c.135]

    В стандартных условиях полярографирования О, т и ( обычно постоянны их можно определять экспериментально и затем вычислить искомую концентрацию по уравнению Ильковича. Однако на практике удобнее пользоваться другими сравнительными методами определения, основанными на применении стандартных растворов с известной концентрацией определяемых ионов. Предположим, что кривые на рис. 25.2 относятся к известным концентрациям ионов металла тогда эти кривые легко использовать для построения графической зависимости между силой предельного тока и концентрацией восстанавливающегося вещества в растворе. Такой градуировочный график приведен на рис. 25.3. Измерив силу предельного тока (высоту волны) исследуемого раствора ионов металла, легко по графику (рис. 25.3) определить его концентрацию. [c.491]


    Положительный знак будет иметь электрод, погруженный в раствор большей концентрации, так как для выхода в более концентрированный раствор ионы металла будут затрачивать большую работу. Разность потенциалов такого элемента [c.270]

    Одним из основных вопросов, возникающих при измерении толщины пленки тремя рассмотренными выше методами анодного окисления, является эффективность использования тока на образова ние пленки. Когда эффективность тока не составляет 100 %, необхо димо любым способом определить эту эффективность. В том случае когда происходит частичное растворение металла или поверх постной пленки, эффективность использования тока менее 100 Эту эффективность определяют по количеству выделившихся в раствор ионов металла. [c.194]

    Уравнение (7.19) отвечает поведению металлов в активнол состоянии. По смыслу этого уравнения увеличение потенциала приводит к монотонному росту скорости перехода в раствор ионов металла по экспоненциальному закону (если отвлечься от осложняющего влияния концентрационной поляризации). Но даже в отсутствие последней за известным предельным значением анодного потенциала скорость растворения металла внезапно и резко падает. Потенциал, при котором происходит такой переход, называется потенциалом пассивации (или иногда первым критическим потенциалом), а плотность тока, устанавливающаяся при этом потенциале, —критической плотностью тока. Последующий рост потенциала после того как наступила пассивация, в полную противоположность тому, что наблюдалось в области активного растворения, уже не сказывается на скорости растворения металла. В известных границах изменения потенциала она остается постоянной и притом значительно уступающей по своей величине критической плотности анодного тока. [c.195]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    Для проведения групповых реакций в делительную воронку помещают несколько кубических сантиметров исследуемого раствора при соответствующих условиях (pH, присутствие маскирующих веществ и т. д.) и встряхивают о раствором реактива. Отрицательный эффект реакции свидетельствует об отсутствии в растворе ионов металлов, относящихся к данной группе. При измене,нии окраски раствора дитизона можно уже по окраске экстракта или образующихся хлопьев сделать выгод а присутствии в растворе определенного иона металла. Дополнительные реакции обнаружения ионов можно провести в органическом экстракте или в водной фазе. Кроме того, ионы металлов, находящиеся в результате в экстрактах различных групп, после разрушения дитизо,на можно идентифицировать другими способами, например по образованию кристаллов. [c.84]

    Прямое титрование. Буферированный раствор иона металла Д2+ титруют стандартным раствором комплексона в присутствии металлоиндикатора. Прн этом комплексон разрушает комплекс металла с индикатором. В точке эквивалентности резко во зрастает рА и окраска раствора изменяется. [c.188]

    При опускании металлической пластинки в раствор своих ионов металл и раствор взаимодействуют и становится возможным переход ионов из металла в раствор и обратно. В первый момент направление этих переходов связано соотношением величины и и ,. Если 11м>ир, т. е. если энергия связи ионов в кристаллической решетке металла больше, чем энергия гидратации этих ионов, как в меди, то после погружения металла в раствор ионы металла будут переходить из раствора в криста л л ическуш рещетку.. ..... [c.143]

    Известно, что в растворе ионы металла окружены сольватной оболочкой либо связаны с молекулами растворителя в устойчивом комплексном соединении. Поэтому любой ион, прежде чем перейти в кристаллическую решетку, должен освободиться от связывающей его оболочки. Природа растворителя или комплексообразователя оказывает при этом весьма значительное влияние, так как обусловливает величину затрат энергии на десольватацию. Особое значение в гидрометаллургии и гальванотехиике приобрели комплексные соли, которые нацело диссоциируют на ионы по схеме [c.336]

    Впервые такая точка зрения на коррозионные процессы была высказана и обоснована А. И. Шултиным. Он предлагает рассматривать растворение меташлов с выделением Нг как элек-трохимичеакий обмен, подобный замещению в растворе ионов меди железом, обоснование которого не усложняется представлением о локальных элементах. Шултин предложил следующий механизм растворения при соприкосновении металла с раствором часть ионов металла, составляющая его кристаллическую решетку, переходит в раствор, оставляя металлическую поверхность заряженной отрицательно возникающий двойной электрический алой, внешнюю обкладку которого в первый момент составляют перешедшие в раствор ионы металла, через некоторое время может прекратить дальнейшее растворение. Однако в результате кинетического взаимодействия раствора часть ионов металла может быть заменена в двойном слое другим и, присутствующими в растворе катионами. Если они имеют менее отрицательную природу, то неизбежно должны будут разрядиться и тем самым вызвать продолжение процесса растворения. Таким образом, роль постороннего включения может сводиться не к образованию элементов, а, к облегчению катодной реакции вследствие понижения на них. [c.412]

    Коэффициенты диффузии обменивающихся ионов могут значительно различаться. Например, экспериментально установлено, что когда процесс лимитируется внутренней диффузией, обмен между Н-катионитом и находящимся в растворе ионом металла идет быстрее, чем между Ме-катионитом и ионом водорода, коэффициент диффузии которого больше, чем иона металла. Но при этом, несмотря на различие коэффициентов диффузии отдельных ионов, в макроско-пическйх масштабах разделения зарядов при ионном обмене не происходит, электрические поля ионов влияют на их взаимное перемещение, система и в жидкой, и в твердой фазах остается электроней-тральной, а скорость процесса определяется скоростью взаимной диффузии ионов. [c.308]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]

    Рассмотрим -ее подробнее. При переходе в раствор ионы металла гидратируются, и освобождающаяся энергия гидратации является движущей силой данного процесса. При переходе каждого иона металла в раствор определенное количество электронов остается в металле. Они перетекают по металлу к катодным участкам, потенциал которых более положителен. Там происходит их связывание частицей окислителя, которая при рассмотрении коррозионных процессов называется катодным деполяризатором О. Схема, приведенная на рис. 136, подчеркивает пространственное разделение мест, где протекает коррозия (анодных участков), и участков, на который происходит ассимиляция притекающих электронов. В растворе электролита наблюдается перемещение электрически заряженных частиц — ионов, движущихся к катоду и аноду под влиянием электростатического притяжения (миграция) и вследствие разности, концентраций (диффузия). Явление диффузионного переноса вещества играет особо существенную роль в развитии коррозионного процесса, когда реакция на катоде протекает при участии электронейтральных молекул кислорода. Так как в результате электрохимического восстановления кислорода на катоде происходит образование ионов гидроксила, согласно реакции Оа + + 2Н2О + 4е 40Н , раствор возле катодных участков защелачи-вается. Ионы гидроксила перемещаются по направлению к анодным участкам и, встречая на этом пути катионы металла, образуют осадок нерастворимой гидроокиси — вторичного продукта коррозионного процесса. [c.248]

    Так как осажденный металл взвешивают на аналитических весах, масса оставшихся по окончании анализа в растворе ионов металла не должна превышать 3-10" г. Такой массой обладает количество ионов 3-10"У-Мме2+ концентрация равна [c.277]

    В водных растворах ионы металлов находятся в виде аквакомилексов, переходящих при действии щелочи с нейтральные аквагидроксокомилексы, из которых состоят осадки гидроксидов, например  [c.46]

    Через исследуемый раствор пропускают электрический ток определенного напряжения. Находящиеся в растворе ионы металлов восстанавливаются электрическим током до металлического состояния. Выделившийся металл взвешивают и по найденной массе вычисляют содержание данного элемента в пробе. Электрогравиметрпческий метод анализа применяют для определения меди, кадмия, цинка, кобальта, никеля, свинца, серебра, золота и некоторых других металлов. [c.26]


Смотреть страницы где упоминается термин Растворы по иону металла: [c.111]    [c.118]    [c.166]    [c.233]    [c.244]    [c.36]    [c.133]    [c.99]   
Равновесия в растворах (1983) -- [ c.125 , c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы растворов

Раствор ионный



© 2024 chem21.info Реклама на сайте