Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Планирование синтеза (ретросинтетический анализ)

    Ретросинтетическое планирование При ретросинте-тическом планировании синтеза, если не ясна его последовательность, начинают с конечного соединения, делая последовательно шаги в сторону простых исходных соединений Каждый такой шаг является одностадийным превращением, дающим соединение, от которо о этот шаг делается При этом выявляются предшественник и реакция, с помощью которой это соединение получается Последовательность таких одностадийных превращений, заканчивающаяся на достаточно простом и, как правило, промышленно доступном соединении, которое является исходным, и составляет ретросинтетическую схему получения желаемого продукта При этом обычно существует несколько возможных путей, совокупность их полезно представить в виде дерева синтеза Анализ вариантов синтеза с учетом тех или иных характеристик позволяет выбрать оптимальный Пример синтеза изопропилизобутирата иллюстрирует такой подход [c.718]


    В самом деле, как подойти к планированию синтеза соединений со столь запутанной системой связей С—С Скажем сразу, что никакого конкретного набора алгоритмов для ретросинтетического анализа структур такой сложности не существует. Тем не менее, синтезы всех названных соединений (и множества других, еще более сложных) были успешно выполнены. Следовательно, хотя и не выработан какой-либо набор правил поведения в подобных ситуациях, должны существовать некоторые принципы, руководствуясь которыми авторы таких синтезов добивались успеха (ведь это не были случайные удачи ). Характер этих принципов можно осознать, проанализировав несколько представительных примеров. [c.313]

    Английский оригинал этой главы был написан в середине девяностых годов. Тогда, на фоне всплеска работ по созданию систем аетоматического ретросинтетического анализа ( компьютерного синтеза ),. мажорный, оптимистический тон подачи материала представлялся вполне оправданным. Однако с тех пор и вплоть до настоящего времени (январь 2001 г.) мы, авторы книги, ни разу не встретили ни в литературе, ни в рассказах коллег, ни единого упоминания о случаях практического применения этих систем при планировании реальных синтезов. Кроме того, за это время появилась работа [28], в которой авторы предложили систему WODKA, также предназначенную дтя компьютерного синтеза и основанную на совершенно иных принципах. В этой работе авторы отмечают, что было зарегистрировано множество обращений через Интернет к системам LHASA и ей подобным, но опрос, проведенный среди обращавшихся, показал, что все они, без исключения, интересовались этими системами не из-за практической надобности, а только из любопытства. Видимо, мы переоценили значение подобного подхода при решении синтетических зацач. [c.363]

    С применением Г т. и принципов искусственного интеллекта разработано программное обеспечение информационно-поисковых систем в химии, а также автоматизиров. систем идентификации мол. структур и рационального планирования органич. синтеза. Для практич. реализации на ЭВМ операций выбора рациональных путей хим. превращений на основе ретросинтетич. (см. Ретросинтетический анализ) и синтонного принципов используют многоуровневые разветвленные графы поиска вариантов решений, вершины к-рых соответствуют мол. графам реагентов и продуктов, а дуги изображают превращения в-в. [c.612]

    Из приведенного обсуждения следует, что построение синтетического древа с помощью простого прямого ассоциативного анализа уже для не очень сложных молекул оказывается чрезвычайно трудным. Кроме того, существует опасность, что при этом ретросинтетически будут рассмотрены не все синтетические возможности, приводящие к конечной структуре, или рассмотрены не все промежуточные стадии. Все это может повести к тому, что наиболее благоприятный путь синтеза остается нераскрьп ым. Чтобы исключить такую опасность, были сделаны попытки привлечь в качестве вспомогательного метода планирования синтеза современные методы обработки данных с помощью электронных вычислительных машин. Поскольку в данном случае речь идет об обработке нецифровой информации, следует так формализовать структуры и реакции, чтобы отразить их с помощью знаков, последовательностей знаков, символов или цифр, которые можно вводить в электронно-вычислительные машины и обрабатывать информацию с помощью ма-шин [2.4.5]. Формализация касается как описания углеродного скелета целевой молекулы или функциональных групп в ней, так и стадий или этапов синтеза [2.4.6]. К настоящему времени известны три программы планирования синтеза с помощью обработки данных на ЭВМ  [c.619]


    При рациональном планировании синтеза целесообразно произвести мысленную разборку целевой молекулы, т.е. представить себе, из каких ближайших предшественников эту молекулу можно собрать с помошью реальных реакций. Затем следует таким же образом проанализировать структуры этих предшественников, найти для них рациональные пути синтеза и идти таким путем далее, вплоть до доступных исходных веществ. Теоретически подобный ретросинтетический анализ может начинаться с разрыва любой из связей целевой структуры. Анализ подобных альтернативных решений и выбор наилучшего из них — сложнейшая и увлекательнейшая работа. И в высшей степени ответственная. В самом деле, при разработке плана синтеза необходима определенная степень уверенности в том, что каждая реакция, включенная в схему, пойдет именно так, как предполагается. А стопроцентной уверенности почти никогда не бывает, так как синтетику приходится, как правило, впервые проводить ту или иную реакцию применительно к данному конкретному субстрату. Понятно, что цена ошибки в предвидении весьма различна в зависимости от того, к какой стадии она относится. Ошибка на первой стадии может означать потерю всего лишь нескольких дней, тогда как неверно предсказанный результат заключительной стадии, скажем 40-стадийного синтеза, может зачеркнуть многие месяцы труда, потому что эта ошибка обнаружится не ранее, чем будут выполнены предшествующие 39 стадий. Поэтому синтетический план должен быть по возможности гибким, допускающим различные варианты проведения одних и тех же стадий, причем самые рискованные синтетические шаги лучше сдвинуть к началу схемы. [c.9]

    Несомненно, наиболее трудные стратегические проблемы возникают при планировании синтеза полициклических систем. Чтобы оценить огромную сложность этих проблем, достаточно бросить взгляд на такие приведенные на схеме 3.13 структуры — плоды конструктивного воображения химиков-органиков, как кубан, астеран и пентапризман, или создания Матери-природы, вроде квадрона, гибберелловой кислоты и холестерина (см. выше). Анализ подобных структур не позволяет очевидным образом подобрать подходящее исходное соединение для их синтеза или обнаружить пути ретросинтетического упрощения целевой молекулы. Трудно даже понять, с чего можно было бы начать разборку таких молекул. Здесь явно нужно нечто иное, чем простое приложение разобранных выше подходов и общих принципов, нечто концептуально иное для обнаружения адекватных предшественников этих сложных молекулярных конструкций. [c.312]


Смотреть страницы где упоминается термин Планирование синтеза (ретросинтетический анализ): [c.308]    [c.312]    [c.308]    [c.34]   
Смотреть главы в:

Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 -> Планирование синтеза (ретросинтетический анализ)




ПОИСК





Смотрите так же термины и статьи:

Анализ ретросинтетический

Планирование ретросинтетическое

Планирование синтеза



© 2025 chem21.info Реклама на сайте