Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вид волновых функций атома водорода Гибридизация

    Существует еще одна возможность использования симметрии конкретной задачи для оцределения орбиталей со специфическими пространственными свойствами — так называемых гибридных орбиталей. На основе концепции орбитальной гибридизации Полинг [13], показал, что существует возможность построения таких линейных комбинаций атомных волновых функций водородоподобного типа, которые полностью эквивалентны орбиталям, ориентированным в различных направлениях. Например, при описании химической связи в молекуле метана при помощи орбиталей, локализованных на связях С—Н, необходимо предположить, что четыре эквивалентные орбитали направлены от атома углерода к верщинам правильного тетраэдра, в которых находятся атомы водорода. Общий способ построения гибридных орбиталей на основе использования теории групп сформулировал Кимбалл [14]. Поясним этот способ на примере, когда атом поставляет на образование молекулы шесть эквивалентных орбиталей. С такой ситуацией мы встречаемся при интерпретации свойств комплексных соединений. [c.144]


    Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот может притянуть три атома водорода с образованием молекулы NHз, молекул же NH4, ЫНь и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули (см. стр. 27) и правила Гунда (см. стр. 33), в более сложных рассматривается возможность гибридизации волновых функций (см. 9). [c.19]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]


    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]


Смотреть страницы где упоминается термин Вид волновых функций атома водорода Гибридизация: [c.530]    [c.177]    [c.74]   
Смотреть главы в:

Квантовая химия -> Вид волновых функций атома водорода Гибридизация




ПОИСК





Смотрите так же термины и статьи:

Волновое для атома водорода

Волновые функции

Гибридизация

Гибридизация функций

Функция волновая Волновая функция



© 2025 chem21.info Реклама на сайте