Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число валентных связей (валентность)

    Индекс свободной валентности. При объяснении реакционной способности соединений с я-связью используют индекс свободной валентности. Можно показать, что максимальное число порядков связей), в которых может да, Л тах = 1,732. Такая возможность [c.113]

    Это же соображение можно применить для предсказания относительной величины углов между связями валентных углов) в изоэлектронном ряду молекул СН4, NHз и Н2О . Все эти молекулы имеют одинаковое стерическое число (СЧ = 4). Однако учитывая неодинаковое отталкивание между неподеленными парами и связывающими парами электронов, можно предсказать, что валентные углы в молекулах ЫНз и Н2О окажутся Тетраэдрического угла (109,5°). Экспериментальные значения валентных углов в этих молекулах согласуются с таким предсказанием  [c.493]


    По методу валентных связей предполагается, что между лигандами и комплексообразователем образуется донорно-акцепторная связь. за счет пар электронов, поставляемых лигандами. С помощью этого метода было объяснено строение и многие свойства (в том числе и магнитные) большого числа комплексных соединений. Этот метод является очень приближенным он мало пригоден для расчета энергии связи и других характеристик комплексных соединений. [c.121]

    Валентность. В методе валентных связей валентность атома элемента определяется числом его химических связей в соединении. При этом учитывают связи, образованные как по обменному, так и по донорно-акцепторному механизмам. [c.160]

    Некоторые химики предпочитают вместо слова правильная говорить успешнее объясняющая факты . Но если только они не принадлежат к числу мистиков, верящих в некоторую внутреннюю сущность вещей, непознаваемую при помощи чувств, следует признать, что и та и другая терминология эквивалентны. Никакая теория не может претендовать на абсолютную правильность. Можно лишь утверждать, что одна теория предпочтительнее другой, потому что она объясняет больше наблюдаемых свойств рассматриваемых ею объектов, чем другая теория. Согласно такому критерию, теория кристаллического поля лучше теории валентных связей. Она позволяет расположить многие распространенные лиганды в ряд по величине энергии расщепления кристаллическим полем, А , вызываемого этими лигандами, и даже дать некоторое объяснение полученной последовательности. [c.232]

    Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (метод ВС). Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная а-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т. е. содержащими не-поделенные пары электронов, орбиталями лигандов (доноров). Максимальное возможное число с-связей определяет координационное число комплексообразователя. [c.209]

    В настоящее время, как никогда ранее, в неорганической химии происходит своеобразный пересмотр основных понятий и теоретических воззрений. Так, на основе учения об электронном строении молекул представление о валентности атома в молекуле постепенно теряет определенность и значение. Если исходить из представления о валентности атома в молекуле как числе химических связей, которыми он связан с другими атомами, то на основании метода валентных связей валентность атома равна числу электронных пар, которыми он совместно с другими атомами обладает. Согласно этим представлениям, в ЫНз и валентность атома азота равна 3 и 4 [c.5]


    Метод валентных связей (валентных схем) исходит нз использованного еще Льюисом факта о четном числе электронов во многих химических соединениях, т. е. из предположения, что химическая связь между атомами осуществляется электронными парами. [c.111]

    В зависимости от числа ст-связей координационное число бора (III) равно 4 или 3, что соответствует sp - или sp -гибридизации его валентных орбиталей. [c.438]

    В рамках классич. теории хим. строения К. с. объясняется как образование электронных пар, общих для связываемых атомов и достраивающих их электронные оболочки в молекуле до замкнутых (с числом электронов 8, 18 и т.д.). Квантовохим. описание К. с. проводят обычно в рамках метода валентных связей (валентных схем) или методов мол. орбиталей. В последнем случае К. с. связывают с мол. орбиталью, локализованной в области, охватывающей неск. (два, три и т. д.) ядер (двухцентровые, трехцентровые и т. д. связи). Такая мол. орбиталь м. б. заполнена одним или двумя электронами. Все электроны молекулы одинаковы, однако обычно считают, что при образовании электронной пары от каждого атома на мол. орбиталь поставляется по одному электрону, и отдельно выделяют случай донорно-акцептор- [c.420]

    Число валентных связей (валентность) [c.129]

    Общее число степеней свободы, которыми обладает л-атом-ная молекула, равно 2>п, из которых три степени свободы (или две в случае линейной молекулы) характеризуют вращение молекулы и три степени свободы определяют поступательное движение молекулы в целом. Таким образом, общее число колебательных степеней свободы для системы, состоящей из п атомов, будет равно 2>п — 6 (для линейной системы — 2п — 5). Для активного комплекса это число на единицу меньше, так как одна из колебательных степеней свободы превращается в координату реакции. Колебание образовавшегося комплекса X — V — 2 вдоль валентных связей ведет к реакции распада. Это колебание заменяется движением комплекса X—V—2 особого рода, ведущим к образованию молекул 2 и X. Оно было описано выше и изображено на рис. V, 1 как путь реакции. Это движение рассматривается как вид поступательного движения активного комплекса. Понятия вращение и колебание в применении к активному комплексу не имеют обычного смысла, так как комплекс существует очень недолго. Эти понятия обозначают, что зависимость потенциальной и кинетической энергии системы атомов от координат и сопряженных с ними импульсов такая же, как и для устойчивых молекул. [c.143]

    Валентность. Как известно, под валентностью подразумевается свойство атома данного элемента присоединять или замещать определенное число атомов другого элемента. Мерой валентности поэтому является число химических связей, образуемых данным атомом с другими атомами. Таким образом, в настоящее время под валентностью химического элемента обычно понимается его способность (в более узком смысле — мера его способности) к образованию химических связей. В представлении метода валентных связей численное значение валентности соответствует числу ковалентных связей, которые образуют атом. [c.66]

    Здесь число атомов в молекуле п - - 9 число валентных связей 2 = = 8. Остальные величины, фигурирующие в уравнении (81), находя.,, пользуясь следующими данными  [c.24]

    Для объяснения образования и свойств комплексных соединений в настояш,ее время применяют ряд теорий, в том числе теорию валентных связей. Основные положения этой теории применительно к описанию ко.мплексов уже были рассмотрены выше (с. 65). Образование комплексов теория валентных связей относит за счет донор-но-акнепторного взаимодействия комплексообразователя и лигандов. Так, образование тетраэдрического иона 1Вер4Р можно объяснить следуюш,им образом. Ион Ве " , имеюш,ий свободные 2 - и 2р-орбитали [c.97]

    Теория валентных связей правильно предсказывает наличие двух вариантов для числа неспаренных электронов, но не позволяет сделать выбор между ними. С точки зрения этой теории внутриорбитальные комплексы должны быть относительно инертными. Экспериментальные наблюдения, указывающие, что внешнеорбитальные комплексы обычно действительно более лабильны, чем внутриорбитальные комплексы, убеждают нас, что теория валентных связей представляет собой по меньшей мере шаг в правильном направлении. В свое время она явилась несомненным достижением, однако впоследствии была вытеснена теорией кристаллического поля и еще более совершенной теорией поля лигандов, или делокализованных молекулярных орбиталей. [c.228]

    Теория кристаллического поля основана в сущности на ионной модели, а теория валентных связей-на ковалентной модели связи. Любая из этих моделей позволяет объяснить число неспаренных электронов в комплексах. Теория кристаллического поля, кроме того, дает возможность частично предсказать спектр комплексов. [c.549]

    Потенциал ионизации, усредненный по числу валентных связей металла в решетке окисла Молярный дипольный момент Сумма угловых напряжений Молярная магнитная восприимчивость Структурный фактор [c.167]


    Увеличивая число атомов углерода, эту последовательность можно продолжить, причем практически бесконечно. Добавляя к углеводородной цепи кислород (две валентные связи) или азот (три валентные связи), можно представить структурные формулы молекул этилового спирта ( jH,0) и метиламина ( HeN)  [c.83]

    На с. 54 на основе метода валентных связей был рассмотрен тип гибридизации орбиталей ионов Ag+, 2п +, Со +, а также пространственная структура образующихся при этом комплексных ионов — линейная для [Ag(NHз)2l , тетраэдрическая для [Zn(NHз)4] + и октаэдрическая для [Со(ЫНз)б] +. Соединения с координационным числом 4 могут, кроме того, иметь структуру плоскостного квадрата, которому отвечает iisp -гибpидизaция орбиталей центрального иона. [c.181]

    При образовании максимального числа а-связей (и отсутствии гс-связей) для всех указанных состояний азота характерна р -гибридизация атомных орбиталей, причем каждая неподелен-иая пара занимает одну гибридную орбиталь. Формирование наряду с о-свя зями л-связей обусловливает другие типы гибридизации— 5р -(эдна я-связь) или зр (две я-связи). В валентном электронном слое атома азота нет -орбиталей, поэтому атом азота ие может образовать более четырех ковалентных связей. [c.394]

    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    Так как валентный штрих в методе локализованных пар сопоставляется с локализованной парой электронов, то приведенным двум формулам Кекуле соответствуют по меньшей мере два разных распределения электронной плотности. Но для молекулы в стационарном состоянии существует одно-единственное распределение. Поэтому в методе валентных связей реальное распределение электронной плотности молекулы бензола надо представить как наложение по меньшей мере двух распределений локализованных пар, а для более точной картины—пяти распределений. Это значительно усложняет метод, не облегчая восприятия реальности. Для более сложных молекул число используемых при их описании валентных схем стремительно возрастает. Метод полностью утрачивает преимущества наглядности, а в расчете молекулярных свойств становится менее удобным, чем метод молекулярных орбиталей. [c.58]

    Свойства ионитов зависят от характера ионо генных групп (валентности, объема, расположения степени ионизации и т, д.), от строения макромо лекул полимера (числа поперечных связей и т. д.) а также условий их получения, соотношения исход ных комнонентов, температуры, продолжительности и т. п. [c.90]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    Присущие атомам различных химических элементов свободные связи принято называть валентностями . Именно числом этих связей (валентностей) и определяется число атомов, входящих в состав образующихся молекул, Атом водорода имеет одну свободную связь (одновалентен), при помощи которой он присоединяется к атомам других веществ. Если такой атом присоединяется к атому другого одновалентного вещества, то возникает молекула из двух атомов. Например, атом хлора тоже обладает одиночной свободной связью и образует с атомом водорода молекулу НС1 — вещества, которое в водном растворе носит название соляной кислоты. Если одновалентный атом водорода в этой молекуле заменить одновалентным атомом натрия, то получится молекула Na l, известная под названием поваренной соли. Атом кислорода имеет две свободные связи (двухвалентен), почему он цри окислении водорода способен присоединить к себе два атома водорода и создать прочную молекулу воды или водяного пара Н2О. Гораздо менее прочным соединением окажется так называемая перекись водорода Н2О2, в которой, как понятно, недостаточно погашены свободные связи, присущие кислородным атомам, и потому молекула перекиси оказывается неустойчивой и охотно разваливается на более прочную молекулу воды и активный атом свободного кислорода, вступающий в связь с другим таким же кислородным атомом или каким-нибудь другим достаточно активным веществом. [c.206]

    В настоящее время, как никогда ранее, в неорганической химии происходит своеобразный пересмотр основных понятий и теоретических воззрений. Так, вследствие развития учения об электронном строении молекул представление о валентности атома в молекуле постепенно теряет определенность и значение. Если исходить из представления о валентности атома в молекуле как числе химических связей, которыми он связан с другими атомами, то на основании метода валентных связей валентность атома равна числу электронных пар, которыми он совместно с другими атомами обладает. Согласно этим представлениям, в ННз и валентность атома азота равна 3 и 4 соответственно, а в 51р4 и З валентность атома кремния равна 4 и 6. Отсюда следует, что в различных комплексах с одним и тем же центральным атомом валентность его может быть различной в зависимости от числа связанных с ним лигандов. [c.5]

    У р-элементов второго периода максимально возможное число ковалентных связей (валентность) равно четырем, так как к участию в гибридизации нельзя привлечь d-AO, относящиеся к другому энергетическому уровню и обладающие поэтому высокой энергией. Четыре ковалентные связи реализуются в следующих молекулярных и ионных структурах линейной с 2(7- и 2 Я-связями (СО2, NOi и др.), угловой с 2 - и 27Г-СВЯЗЯМИ и одним или двумя неподеленными электронами (NO2 0(0)2 s Оз и др.), плоской треугольной с За- и 1Я-СВЯЗЯМИ ( I2O и др.) и тетраэдрической с 4а-связями ( I4, SiP4, СН4). Прочные я-связи образуются только между р-элементами второго периода. Для р-элементов третьего и других периодов Я-связи несвойственны и энергетически невыгодны из-за больших размеров р-АО. [c.350]

    В органических соединениях, благодаря сравнительно небольшому числу видов связей (при огромном числе известных органических соединений), энергии связи между двумя данными атомами в соединениях, в которых они находятся в одинаковом валентном состоянии, различаются сравнительно в незначительных пределах. Это нередко позволяет определять недостаюндие значения расчетным путем. [c.85]

    Таким образом, металлические кристаллы образуют элементы, у которых число валентных электронов мало по сравнению с числом 31нергетически близких валентных орбиталей. Вследствие этого хи-мичсс <ая связь в металлических кристаллах сильно делокализована. [c.116]

    Для химической формы движения, т. е. для химического процесса, характерно изменение числа и расположения атомов в молекуле реагирующих веществ. Среди многих физических форм движения (электромагнитное поле, движение и превращения элементарных частиц, физика атомных ядер и др.) особенно тесную связь с химическими процессами имеет внутримолекулярная форма движения (колебания в молекуле, ее электронное возбуждение и ионизация). Простейший химический процесс—элементарный акт термической диссоциации молекулы имеет место при нарастании интенсивности (амплитуды и энергии) колебаний в молекуле, особенно колебаний ядер вдоль валентной связи между нимн. Достижение известно критической величины энергии колебаний по направлению определенной связи в молекуле приводит к разрыву этой связи и диссоциации молекулы на две части. [c.17]

    Представления о механизме образования химической связи, развитые Гейтлером и Лондоном на примере молекулы водорода, были распространены и на более сложные молекулы. Ра нработаи-ная на этой основе теория химической связи получила название метода валентных связей (метод ВС). Метод ВС дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул Хотя, как мы увидим ниже, этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул (см. 45), — все же он сыграл большую роль в разработке квантово-механической теории химическон связи и не потерял своего значения до настоящего времени. [c.121]

    Максимальное число а-связей, которые могут образоваться из валентных в- и р-орбиталей одного атома, равно четырем. Поэтому непереходные эле енты второго периода образуют соединения с максимальным координационным числом 4. Эти элементы не имеют заполненных -орбиталей или доступных для образования связей пустых -орбиталей в следующей, надвалентной оболочке. Например, в молекуле СН центральный атом углерода насыщает свои валентные возможности, образуя четыре а-связи. Однако если центральным атомом является переходный металл четвертого периода (первого переходного периода), то в дополнение к четырем х- и р-орбиталям он имеет еще пять валентных -орбиталей. [c.222]

    Теория валентных связей не гюзволяет делать количественных предсказаний об энергетических уровнях комплексов, но все же дает возможность понять магнитные свойства октаэдрических комплексов. Полинг предположил-, что возможны комплексы двух типов внешнеорбитальные, в которых осуществляется гибридизация sp ", и внутриорбитальные с гибридизацией " р (рис. 20-9). Во внутриорбитальных комплексах для размещения остаюпдахся у иона металла -электронов имеется ограниченное число J-орбиталей. Эти электроны могут размещаться только на ,- и [c.225]

    Обнаружено, что некоторые комплексы платины являются активными противораковыми препаратами. К их числу относятся 1 ис-Р1(ННз)2С14, 1/ис- 1 (ННз)2С12 И цис-Р1 (сп)О2 (ни один из транс-изомеров не эффективен в этом отношении). Воспользуйтесь теорией валентных связей для объяснения диамагнетизма этих комплексов. Являются ли эти комплексы внутриорбитальными или внешнеорбитальными Какие гибридные орбитали используются для образования химических связей в этих комплексах  [c.250]

    В изотропных коксах, т. е. неграфитизированных, промежутки между элементарными углеродными слоями остаются большими, число параллельных слоев не должно превышать 15, и между определенными слоями существуют валентные связи углерод—углерод, которые препятствуют перегруппировкам. [c.125]

    Валентность химических элементов. Под валентностью, как известно, понимают способность атомов данного элемента соединяться с атомами другого элемента в определенных соотношениях, За единицу валентности была принята соответствующая способность атома водорода. Валентность элемента определяли как способность его атома присоединять (или замещать) то или иное число атомов водорода. В связи с возникновением и развитием теории строения атома и химической связи вален гность стали связывать с соответствующими структурно-теоретическими представлениями, а именно с числом электронов, пере-ходян их от одного атома к другому, или с числом химических связей, Bi.l.зпикaк)Lми.x мсж.ау атомами в процессе образования химического соединения. [c.44]

    Метод молекулярных орбиталей. Метод валентных связей дал удовлетворительное истолкование целому ряду фактов, таких, как нанравленность связей, способность атомов к образованию определенного числа связей, особенности структуры и свойств ряда молекул. Одиако этот метод не объяснил существования довольно прочного молекулярного иона водорода Н, , содержащего только один электрон, а также упрочения химической связи при отрыве электронов от некоторых молекул. Для этих фактов была предложена другая теория, получившая название метода м.ол кулярных орбиталей. [c.49]

    Координационное число. Первоначальное понятие валентности ока - а./ ось недостаточным для установления природы более сложных соединений, чем рассмотренные выше. В связи с этим А. Вер-нор г> 1893 г. ввел в химию понятие координационного числа, кото-]К1е соответствует числу атомов нли групп, пепосредственно связанных с атомом, считаюш нмся в молекуле центральным. Понятие координационного числа оказалось чрезвычайно плодотворным. Значение координационного числа обычно соответствует числу всрнпш в правильных многогранниках (тетраэдр — 4, октаэдр — [c.53]

    Многие положения концепции В. И. Касаточкина вполне приложимы и к объяснению молекулярной структуры нефтяных асфальтенов. Мы имеем в виду прежде всего такие фундаментальные положения этой точки зрения, как зависимость физических свойств от элементного состава этих соединений, утверждение, что основной структурной единицей (блоком) молекулярного строения является плоская гексагональная атомная сетка или копланарно конденсированные бензольные кольца с алифатическими короткими цепями на периферии этих плоских структурных блоков. Размеры и структура этих плоских структурных блоков могут сильно различаться, так же как могут различаться алифатические цени по числу С-атомов, по степени разветвленности и по количеству и характеру функциональных групп в них. Эти структурные блоки образуют трехмерные молекулы за счет валентных связей посредством боковых цепей. Распределение сопряженных кратных связей в основной структурной углеродоатомной сетке, подобной [c.96]


Смотреть страницы где упоминается термин Число валентных связей (валентность): [c.23]    [c.25]    [c.132]    [c.258]    [c.155]    [c.116]   
Смотреть главы в:

Электронные структуры атомов и химическая связь -> Число валентных связей (валентность)




ПОИСК





Смотрите так же термины и статьи:

Связь валентная



© 2025 chem21.info Реклама на сайте