Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм флоэмного транспорта

    МЕХАНИЗМ ФЛОЭМНОГО ТРАНСПОРТА [c.250]

    Ключевую роль в механизме флоэмного транспорта играет загрузка флоэмных окончаний, В основе этой загрузки в клетках флоэмы лежит работа Н -помпы, которая активируется фитогормонами, прежде всего ауксином, Абсцизовая кислота блокирует Н+/К+ обмен. Как известно, содержание АБК возрастает в тканях листа при неблагоприятных условиях, особенно при водном дефиците. [c.299]


    Сахара часто перемещаются по флоэме на расстояние нескольких метров со скоростью до 100 ом/ч. Такие расстояния и скорости слишком велики, чтобы считать диффузию главным транспортным механизмом. Для эффективного флоэмного транспорта требуются живые ситовидные трубки, способные к активному метаболизму. Вот почему флоэмный транспорт тормозится при кольцевании стебля, приводящего к гибели всех живых клеток в небольшой зоне вокруг стебля. При этом вода может достигнуть листьев через неповрежденные ксилемные трубки, но сахара не проходят через флоэму окольцованной зоны. Аналогичным образом ингибиторы дыхания могут вос-препятствовать транспорту образовавшихся при фотосинтезе ассимилятов. [c.249]

    Регуляция флоэмного транспорта. Транспорт ассимилятов из цитоплазмы клеток мезофилла листа (донор) к клеткам орга-нов-акцепторов, например корня, включает в себя ряд транспортных систем со своими механизмами регуляции. На уровне донора — это регуляция интенсивности фотосинтеза в хлоропластах, поступления триозофосфатов в цитоплазму и использования их на синтез сахарозы. Фотосинтез служит также источником энергии для систем активного переноса ассимилятов через мембраны (АТР для ионных насосов, субстраты для дыхания). [c.299]

    Активация транспорта ассимилятов по флоэме наблюдается при прохождении по проводящему пучку электрического импульса (потенциала действия). Флоэмный транспорт зависит от достаточного снабжения растительного организма калием, а также от температуры, так как механизм передвижения ассимилятов обусловлен работой ферментных систем (ионных насосов). Для энергетического обеспечения функциональной активности трансмембранных насосов необходим кислород. [c.300]

    Следовательно, теория перетекания растворов может объяснить основные особенности флоэмного транспорта. Единственная структура, роль которой еще не понята, — это Ф-белок Было высказано предположение, что микрофиламенты Ф белка создают поверхность для транапорта веществ на границе раздела двух фаз, способствуя тем самым быстрому движению раствора по флоэме. Но до сих пор отсутствует экспериментальное-подтверждение этого предположения. Хотя существуют, по-видимому, какие-то еще дополнительные механизмы флоэмного транспорта и теория перетекания растворов, вероятно, несколько изменится в будущем, в настоящее время она представляет наилучшее описание транспорта ассимилятов по ситовидным трубкам флоэмы. [c.255]


    Наиболее обоснована предложенная Э. Мюнхом (1926) гипотеза потока под давлением. Согласно этой гипотезе между фотосинтезирующими клетками листа, где в симпласте накапливается сахароза, и тканями, использующими ассимиляты (например, корнем), создается осмотический градиент, который в ситовидных трубках превращается в градиент гидростатического давления. В результате во флоэме возникает ток жидкости под давлением от листа к корню. В настоящее время эта гипотеза получила поддержку благодаря изучению механизмов загрузки и разгрузки флоэмы — решающих факторов дальнего транспорта ассимилятов. Сохраняющаяся в ситовидных трубках плазмалемма с ее свойством избирательной проницаемости является важнейшим условием, поддерживающим поток под давлением. В какой-то мере описанный механизм флоэмного транспорта сходен с механизмом, обеспечивающим подъем пасоки по ксилеме под действием корневого давления. Сходство особенно очевидно в случае весеннего плача древесных, в пасоке которых в этот период содержится много сахаров. [c.298]

    Таким образом, растворы по фло.эме движутся от донора к акцептору. Современные представления о механизме флоэмно-го транспорта исходят из теории пе])етекания растворов (клк теории тока под давлением), предложенной первоначально немецким физиологом К. Мюнхом, сыгравшей большую роль в развитии учения о передвижении веществ у растепий. Согласн > [c.396]

    По современным представлениям, в плазмалемме клеток-спутников (у паренхимных клеток флоэмных окончаний) функционирует Н+-помпа, направленная наружу. Закисление апопласта в результате работы Н+-помпы способствует отдаче ионов и сахарозы клетками хлоренхимы (см. рис. 8.1). Одновременно возникший градиент pH (АрН) на плазмалемме клеток флоэмных окончаний приводит к поступлению в эти клетки сахарозы в симпорте с ионами Н (Н+-сахар — ко-транспортный механизм). Трансмембранный перенос ионов Н+ в этом случае осуществляется по концентрационному градиенту, а транспорт сахарозы — против концентрационного градиента. Этот процесс обеспечивается белками-переносчиками в плазмалемме, сродство которых к сахарам возрастает при их протонировании. Поступившие в клетки ионы Н+вновь выкачиваются Н -помпой, работа которой сопряжена с поглощением ионов К+ (см. рис. 6.8). Сахароза и ионы по многочисленным плазмодесмам переносятся в полости ситовидных трубок. Сходным образом из мезофилла в сосуды флоэмы попадают аминокислоты и другие метаболиты. Описанный механизм объясняет не только накопление сахарозы в ситовидных элементах, но и то обстоятельство, что в ситовидных трубках поддерживаются высокое содержание калия и низкая концентрация протонов. Возрастание концентрации осмотически активных веществ приводит к притоку в полость ситовидных трубок воды из окружающих тканей, прежде всего из сосудов ксилемы. [c.297]

    Возможно, однако, что транспорт по флоэме на дальние расстояния обеспечивается не единственным механизмом. Предполагается, что движущей силой перемещения флоэмной жидкости из одной ситовидной трубки в другую через поры может быть транспорт ионов К+ в ходе э.гектроосмотического процесса. Согласно этой гипотезе, К+ активно входит в ситовидную трубку выше ситовидной пластинки и выходит в апо-пласт в следующем членике ниже ситовидной пластинки. В результате на ситовидных пластинках возникает отрицательный электрический градиент, способствующий транспорту через них ионов К+, а с ними и молекул воды. [c.298]


Смотреть страницы где упоминается термин Механизм флоэмного транспорта: [c.85]    [c.134]    [c.304]   
Смотреть главы в:

Жизнь зеленого растения -> Механизм флоэмного транспорта




ПОИСК





Смотрите так же термины и статьи:

Флоэмный сок



© 2025 chem21.info Реклама на сайте